版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省南通市海安市海安高级中学高三第二次诊断性测试数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图象大致为A. B. C. D.2.已知向量,,且与的夹角为,则()A. B.1 C.或1 D.或93.已知复数z=(1+2i)(1+ai)(a∈R),若z∈R,则实数a=()A. B. C.2 D.﹣24.已知若在定义域上恒成立,则的取值范围是()A. B. C. D.5.已知,函数在区间内没有最值,给出下列四个结论:①在上单调递增;②③在上没有零点;④在上只有一个零点.其中所有正确结论的编号是()A.②④ B.①③ C.②③ D.①②④6.设m,n为直线,、为平面,则的一个充分条件可以是()A.,, B.,C., D.,7.下列四个图象可能是函数图象的是()A. B. C. D.8.若数列满足且,则使的的值为()A. B. C. D.9.为比较甲、乙两名高二学生的数学素养,对课程标准中规定的数学六大素养进行指标测验(指标值满分为5分,分值高者为优),根据测验情况绘制了如图所示的六大素养指标雷达图,则下面叙述正确的是()A.乙的数据分析素养优于甲B.乙的数学建模素养优于数学抽象素养C.甲的六大素养整体水平优于乙D.甲的六大素养中数据分析最差10.数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为()A. B. C. D.11.若,,,点C在AB上,且,设,则的值为()A. B. C. D.12.已知将函数(,)的图象向右平移个单位长度后得到函数的图象,若和的图象都关于对称,则的值为()A.2 B.3 C.4 D.二、填空题:本题共4小题,每小题5分,共20分。13.(5分)国家禁毒办于2019年11月5日至12月15日在全国青少年毒品预防教育数字化网络平台上开展2019年全国青少年禁毒知识答题活动,活动期间进入答题专区,点击“开始答题”按钮后,系统自动生成20道题.已知某校高二年级有甲、乙、丙、丁、戊五位同学在这次活动中答对的题数分别是,则这五位同学答对题数的方差是____________.14.现有一块边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖方盒,该方盒容积的最大值是________.15.函数的图像如图所示,则该函数的最小正周期为________.16.已知,则展开式中的系数为__三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,曲线,曲线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线、的极坐标方程;(2)在极坐标系中,射线与曲线,分别交于、两点(异于极点),定点,求的面积18.(12分)已知数列满足(),数列的前项和,(),且,.(1)求数列的通项公式:(2)求数列的通项公式.(3)设,记是数列的前项和,求正整数,使得对于任意的均有.19.(12分)已知点,若点满足.(Ⅰ)求点的轨迹方程;(Ⅱ)过点的直线与(Ⅰ)中曲线相交于两点,为坐标原点,求△面积的最大值及此时直线的方程.20.(12分)已知.(1)解关于x的不等式:;(2)若的最小值为M,且,求证:.21.(12分)已知三点在抛物线上.(Ⅰ)当点的坐标为时,若直线过点,求此时直线与直线的斜率之积;(Ⅱ)当,且时,求面积的最小值.22.(10分)如图,四边形是边长为3的菱形,平面.(1)求证:平面;(2)若与平面所成角为,求二面角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
由题可得函数的定义域为,因为,所以函数为奇函数,排除选项B;又,,所以排除选项A、C,故选D.2、C【解题分析】
由题意利用两个向量的数量积的定义和公式,求的值.【题目详解】解:由题意可得,求得,或,故选:C.【题目点拨】本题主要考查两个向量的数量积的定义和公式,属于基础题.3、D【解题分析】
化简z=(1+2i)(1+ai)=,再根据z∈R求解.【题目详解】因为z=(1+2i)(1+ai)=,又因为z∈R,所以,解得a=-2.故选:D【题目点拨】本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.4、C【解题分析】
先解不等式,可得出,求出函数的值域,由题意可知,不等式在定义域上恒成立,可得出关于的不等式,即可解得实数的取值范围.【题目详解】,先解不等式.①当时,由,得,解得,此时;②当时,由,得.所以,不等式的解集为.下面来求函数的值域.当时,,则,此时;当时,,此时.综上所述,函数的值域为,由于在定义域上恒成立,则不等式在定义域上恒成立,所以,,解得.因此,实数的取值范围是.故选:C.【题目点拨】本题考查利用函数不等式恒成立求参数,同时也考查了分段函数基本性质的应用,考查分类讨论思想的应用,属于中等题.5、A【解题分析】
先根据函数在区间内没有最值求出或.再根据已知求出,判断函数的单调性和零点情况得解.【题目详解】因为函数在区间内没有最值.所以,或解得或.又,所以.令.可得.且在上单调递减.当时,,且,所以在上只有一个零点.所以正确结论的编号②④故选:A.【题目点拨】本题主要考查三角函数的图象和性质,考查函数的零点问题,意在考查学生对这些知识的理解掌握水平.6、B【解题分析】
根据线面垂直的判断方法对选项逐一分析,由此确定正确选项.【题目详解】对于A选项,当,,时,由于不在平面内,故无法得出.对于B选项,由于,,所以.故B选项正确.对于C选项,当,时,可能含于平面,故无法得出.对于D选项,当,时,无法得出.综上所述,的一个充分条件是“,”故选:B【题目点拨】本小题主要考查线面垂直的判断,考查充分必要条件的理解,属于基础题.7、C【解题分析】
首先求出函数的定义域,其函数图象可由的图象沿轴向左平移1个单位而得到,因为为奇函数,即可得到函数图象关于对称,即可排除A、D,再根据时函数值,排除B,即可得解.【题目详解】∵的定义域为,其图象可由的图象沿轴向左平移1个单位而得到,∵为奇函数,图象关于原点对称,∴的图象关于点成中心对称.可排除A、D项.当时,,∴B项不正确.故选:C【题目点拨】本题考查函数的性质与识图能力,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项,属于中档题.8、C【解题分析】因为,所以是等差数列,且公差,则,所以由题设可得,则,应选答案C.9、C【解题分析】
根据题目所给图像,填写好表格,由表格数据选出正确选项.【题目详解】根据雷达图得到如下数据:数学抽象逻辑推理数学建模直观想象数学运算数据分析甲454545乙343354由数据可知选C.【题目点拨】本题考查统计问题,考查数据处理能力和应用意识.10、D【解题分析】
利用等差数列通项公式推导出λ,由d∈[1,2],能求出实数λ取最大值.【题目详解】∵数列{an}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,∴1+3d+λ(1+9d)+1+15d=15,解得λ,∵d∈[1,2],λ2是减函数,∴d=1时,实数λ取最大值为λ.故选D.【题目点拨】本题考查实数值的最大值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.11、B【解题分析】
利用向量的数量积运算即可算出.【题目详解】解:,,又在上,故选:【题目点拨】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.12、B【解题分析】
因为将函数(,)的图象向右平移个单位长度后得到函数的图象,可得,结合已知,即可求得答案.【题目详解】将函数(,)的图象向右平移个单位长度后得到函数的图象,又和的图象都关于对称,由,得,,即,又,.故选:B.【题目点拨】本题主要考查了三角函数图象平移和根据图象对称求参数,解题关键是掌握三角函数图象平移的解法和正弦函数图象的特征,考查了分析能力和计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】
由这五位同学答对的题数分别是,得该组数据的平均数,则方差.14、【解题分析】
由题意容积,求导研究单调性,分析即得解.【题目详解】由题意:容积,,则,由得或(舍去),令则为V在定义域内唯一的极大值点也是最大值点,此时.故答案为:【题目点拨】本题考查了导数在实际问题中的应用,考查了学生数学建模,转化划归,数学运算的能力,属于中档题.15、【解题分析】
根据图象利用,先求出的值,结合求出,然后利用周期公式进行求解即可.【题目详解】解:由,得,,,则,,,即,则函数的最小正周期,故答案为:8【题目点拨】本题主要考查三角函数周期的求解,结合图象求出函数的解析式是解决本题的关键.16、1.【解题分析】
由题意求定积分得到的值,再根据乘方的意义,排列组合数的计算公式,求出展开式中的系数.【题目详解】∵已知,则,
它表示4个因式的乘积.
故其中有2个因式取,一个因式取,剩下的一个因式取1,可得的项.
故展开式中的系数.
故答案为:1.【题目点拨】本题主要考查求定积分,乘方的意义,排列组合数的计算公式,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解题分析】
(1)先把参数方程化成普通方程,再利用极坐标的公式把普通方程化成极坐标方程;(2)先利用极坐标求出弦长,再求高,最后求的面积.【题目详解】(1)曲线的极坐标方程为:,因为曲线的普通方程为:,曲线的极坐标方程为;(2)由(1)得:点的极坐标为,点的极坐标为,,点到射线的距离为的面积为.【题目点拨】本题考查普通方程、参数方程与极坐标方程之间的互化,同时也考查了利用极坐标方程求解面积问题,考查计算能力,属于中等题.18、(1)().(2),.(3)【解题分析】
(1)依题意先求出,然后根据,求出的通项公式为,再检验的情况即可;(2)由递推公式,得,结合数列性质可得数列相邻项之间的关系,从而可求出结果;(3)通过(1)、(2)可得,所以,,,,.记,利用函数单调性可求的范围,从而列不等式可解.【题目详解】解:(1)因为数列满足()①;②当时,.检验当时,成立.所以,数列的通项公式为().(2)由,得,①所以,.②由①②,得,,即,,③所以,,.④由③④,得,,因为,所以,上式同除以,得,,即,所以,数列时首项为1,公差为1的等差数列,故,.(3)因为.所以,,,,.记,当时,.所以,当时,数列为单调递减,当时,.从而,当时,.因此,.所以,对任意的,.综上,.【题目点拨】本题考在数列通项公式的求法、等差数列的定义及通项公式、数列的单调性,考查考生的逻辑思维能力、运算求解能力以及化归与转化思想、分类讨论思想.19、(Ⅰ);(Ⅱ)面积的最大值为,此时直线的方程为.【解题分析】
(1)根据椭圆的定义求解轨迹方程;(2)设出直线方程后,采用(表示原点到直线的距离)表示面积,最后利用基本不等式求解最值.【题目详解】解:(Ⅰ)由定义法可得,点的轨迹为椭圆且,.因此椭圆的方程为.(Ⅱ)设直线的方程为与椭圆交于点,,联立直线与椭圆的方程消去可得,即,.面积可表示为令,则,上式可化为,当且仅当,即时等号成立,因此面积的最大值为,此时直线的方程为.【题目点拨】常见的利用定义法求解曲线的轨迹方程问题:(1)已知点,若点满足且,则的轨迹是椭圆;(2)已知点,若点满足且,则的轨迹是双曲线.20、(1);(2)证明见解析.【解题分析】
(1)分类讨论求解绝对值不等式即可;(2)由(1)中所得函数,求得最小值,再利用均值不等式即可证明.【题目详解】(1)当时,等价于,该不等式恒成立,当时,等价于,该不等式解集为,当时,等价于,解得,综上,或,所以不等式的解集为.(2),易得的最小值为1,即因为,,,所以,,,所以,当且仅当时等号成立.【题目点拨】本题考查利用分类讨论求解绝对值不等式,涉及利用均值不等式证明不等式,属综合中档题.21、(Ⅰ);(Ⅱ)16.【解题分析】
(Ⅰ)设出直线的方程并代入抛物线方程,利用韦达定理以及斜率公式,变形可得;(Ⅱ)利用,,的斜率,求得的坐标,,再用基本不等式求得的最小值,从而可得三角形的面积的最小值.【题目详解】解:(Ⅰ)设直线的方程为.联立方程组,得,,故,.所以;(Ⅱ)不妨设的三个顶点中的两个顶点在轴右侧(包括轴),设,,,的斜率为,又,则,①因为,所以②由①②得,,(且)从而当且仅当时取“”号,从而,所以面积的最小值为.【题目点拨】本题考查了直线与抛物线的综合,属于中档题.22、(1)证明见解析(2)【解题分析】
(1)由已知线面垂直得,结合菱形对角线垂直,可证得线面垂直;(2)由已知知两两互相垂直.以分别为轴,轴,轴建立空间直角坐标系如图所示,由已知线面垂
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届安徽省县域合作共享联盟高三上学期期末质量检测历史试题(含答案)
- 试题研究中考生物试卷及答案
- 山西安管再培训试题及答案
- 企业内部控制试题及答案
- 2025 小学二年级科学下册认识动物翅膀飞行高度测试报告总结课件
- 2026 年初中英语《短文改错》专项练习与答案 (100 题)
- 2026年深圳中考语文二模仿真模拟试卷(附答案可下载)
- 2026年大学大二(康复治疗学)康复治疗技术基础测试题及答案
- 肺心病护理团队协作模式
- 2026年深圳中考化学有关化学式的计算试卷(附答案可下载)
- 全球城市产业创新指数报告2025
- 矿物的物理性质
- 互联网公司技术部负责人面试要点及答案
- 雨课堂学堂在线学堂云海权与制海权海军指挥学院单元测试考核答案
- 高速公路广告运营方案
- 基础电工培训课件
- 具身智能+老年人日常行为识别与辅助系统方案可行性报告
- 冬虫夏草发酵生产工艺流程设计
- 精神科常见药物不良反应及处理
- 执行信息屏蔽申请书
- SA8000-2026社会责任管理体系新版的主要变化及标准内容培训教材
评论
0/150
提交评论