版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省宜宾市2023-2024学年高一上数学期末经典模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,且,,,那么的最大值为()A. B.C.1 D.22.已知,则“”是“”的()A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分又非必要条件3.对于空间中的直线,以及平面,,下列说法正确的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则4.若正实数满足,(为自然对数的底数),则()A. B.C. D.5.2022年北京冬奥会将于2022年2月4日星期五开幕,2月20日星期日闭幕.北京冬奥会新增7个小项目,女子单人雪车为其中之一.下表是某国女子单人雪车集训队甲、乙两位队员十轮的比赛成绩,则下列说法正确的是()队员比赛成绩第一轮第二轮第三轮第四轮第五轮第六轮第七轮第八轮第九轮第十轮甲1分51秒741分51秒721分51秒751分51秒801分51秒901分51秒811分51秒721分51秒941分51秒741分51秒71乙1分51秒701分51秒801分51秒831分51秒831分51秒801分51秒841分51秒901分51秒721分51秒901分51秒91A.估计甲队员的比赛成绩的方差小于乙队员的比赛成绩的方差B.估计甲队员的比赛成绩的中位数小于乙队员的比赛成绩的平均数C.估计甲队员的比赛成绩的平均数大于乙队员的比赛成绩的平均数D.估计甲队员的比赛成绩的中位数大于乙队员的比赛成绩的中位数6.用长度为24米的材料围成一矩形场地,中间加两道隔墙(如图),要使矩形的面积最大,则隔墙的长度为A.3米 B.4米C.6米 D.12米7.下列四组函数中,定义域相同的一组是()A.和 B.和C.和 D.和8.若,则tanθ等于()A.1 B.-1C.3 D.-39.下列函数在定义域内单调递增的是()A. B.C. D.10.直线的倾斜角为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.定义在上的偶函数满足,且在上是减函数,若、是钝角三角形的两个锐角,对(1),为奇数;(2);(3);(4);(5).则以上结论中正确的有______________.(填入所有正确结论的序号).12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家.用其名字命名的“高斯函数”为:,表示不超过x的最大整数,如,,[2]=2,则关于x的不等式的解集为__________.13.函数f(x)=cos的图象向右平移个单位长度,得到函数的图象,则函数的解析式为_______,函数的值域是________14.已知函数,则函数的零点个数为__________15.若函数fx=-x+3,x≤2,logax,x>2(a>0且a≠1).①若a=12,则f16.函数f(x)=log2(x2-1)的单调递减区间为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数.(1)求函数的最小正周期和对称轴方程;(2)求函数在上的最大值与最小值及相对应的的值.18.已知扇形AOB的圆心角α为,半径长R为6,求:(1)弧AB的长;(2)扇形的面积19.已知集合,(1)当时,求以及;(2)若,求实数m的取值范围20.(1)化简:;(2)已知,求的值.21.计算下列式子的值:(1);(2).
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据题意,由基本不等式的性质可得,即可得答案.【详解】根据题意,,,,则,当且仅当时等号成立,即的最大值为1.故选:2、A【解析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果【详解】a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件故选A【点睛】充分、必要条件的三种判断方法
定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件
等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法
集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件3、D【解析】利用线面关系,面面关系的性质逐一判断.【详解】解:对于A选项,,可能异面,故A错误;对于B选项,可能有,故B错误;对于C选项,,的夹角不一定为90°,故C错误;故对D选项,因为,,故,因为,故,故D正确.故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.4、C【解析】由指数式与对数式互化为相同形式后求解【详解】由题意得:,,,①,又,,,和是方程的根,由于方程的根唯一,,由①知,,故选:C5、B【解析】根据表格中甲乙成绩特征,可去掉成绩里面的分和秒后进行比较.根据中位数、平均数、方差的计算方法求出中位数、平均数、方差比较即可得到答案【详解】根据表格中甲乙成绩特征,可去掉成绩里面的分和秒后进行比较,作茎叶图如图:由图可知,甲的成绩主要集中在70-75之间,乙的成绩主要集中在80-90之间,∴甲的成绩的平均数小于乙的成绩的平均数,故C错误;由图可知甲的成绩中位数为74.5,乙成绩的中位数为83,故甲队员的比赛成绩的中位数小于乙队员的比赛成绩的中位数,故D错误;甲队员比赛成绩平均数为:,乙队员比赛成绩平均数为:,∴甲队员的比赛成绩的中位数小于乙队员的比赛成绩的平均数,故B正确;甲队员的比赛成绩的方差为:=57.41,乙队员的比赛成绩的方差为:=46.61,∴甲队员的比赛成绩的方差大于乙队员的比赛成绩的方差,故A错误故选:B6、A【解析】主要考查二次函数模型的应用解:设隔墙长度为,则矩形另一边长为=12-2,矩形面积为=(12-2)=,0<<6,所以=3时,矩形面积最大,故选A7、C【解析】根据根式、分式、对数的性质求各函数的定义域即可.【详解】A:定义域为,定义域为,不合题设;B:定义域为,定义域为,不合题设;C:、定义域均为,符合题设;D:定义域为,定义域为,不合题设;故选:C.8、D【解析】由诱导公式及同角三角函数基本关系化简原式即可求解.【详解】由已知即故选:D【点睛】本题考查诱导公式及同角三角函数基本关系,属于简单题.9、D【解析】根据题意,依次分析选项中函数的单调性,综合即可得答案详解】解:根据题意,依次分析选项:对于A,,是二次函数,在其定义域上不是单调函数,不符合题意;对于B,,是正切函数,在其定义域上不是单调函数,不符合题意;对于C,,是指数函数,在定义域内单调递减,不符合题意;对于D,,是对数函数,在定义域内单调递增,符合题意;故选:D10、B【解析】设直线x﹣y+3=0的倾斜角为θ由直线x﹣y+3=0化为y=x+3,∴tanθ=,∵θ∈[0,π),∴θ=60°故选B二、填空题:本大题共6小题,每小题5分,共30分。11、(1)(4)(5)【解析】令,结合偶函数得到,根据题意推出函数的周期为,可得(1)正确;根据函数在上是减函数,结合周期性可得在上是增函数,利用、是钝角三角形的两个锐角,结合正弦函数、余弦函数的单调性可得,,再利用函数的单调性可得(4)(5)正确,当时,可得(2)(3)不正确.【详解】∵,令,得,又是偶函数,则,∴,且,可得函数是周期为2的函数.故,为奇数.故(1)正确;∵、是钝角三角形的两个锐角,∴,可得,∵在区间上是增函数,,∴,即钝角三角形的两个锐角、满足,由在区间上是减函数得,∵函数是周期为2的函数且在上是减函数,∴在上也是减函数,又函数是定义在上的偶函数,可得在上是增函数.∵钝角三角形的两个锐角、满足,,且,,∴,.故(4)(5)正确;当时,,,,,故(2)(3)不正确.故答案为:(1)(4)(5)【点睛】关键点点睛:利用函数的奇偶性和单调性求解是解题关键.12、【解析】解一元二次不等式,结合新定义即可得到结果.【详解】∵,∴,∴,故答案为:13、①.②.【解析】由题意利用函数的图象变换规律求得的解析式,可得的解析式,再根据余弦函数的值域,二次函数的性质,求得的值域【详解】函数的图象向右平移个单位长度,得到函数的图象,函数,,故当时,取得最大值为;当时,取得最小值为,故的值域为,,故答案为:;,14、3【解析】由,得,作出y=f(x),的图象,由图象可知共有3个交点,故函数的零点个数为3故答案为:315、①.-2②.1<a≤2【解析】先计算f-1的值,再计算ff-1【详解】当a=12时,所以f-1所以ff当x≤2时,fx当x=2时,fx=-x+3取得最小值当0<a<1时,且x>2时,f(x)=log此时函数无最小值.当a>1时,且x>2时,f(x)=log要使函数有最小值,则必须满足loga2≥1,解得故答案为:-2;1<a≤2.16、【解析】由复合函数同增异减得单调减区间为的单调减区间,且,解得故函数的单调递减区间为三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)时,最大值是2,时,最小值是1【解析】(1)利用正弦函数的性质求解;(2)由正弦函数的性质求解.【小问1详解】解:的最小正周期为,由,得,所以函数的对称轴方程为;【小问2详解】由(1)知,时,,则,即时,,,即时,,的最大值是2,此时,的最小值是1,此时.18、(1)(2)【解析】(1)由弧长公式计算弧长;(2)由扇形面积公式计算面积【小问1详解】弧AB的长为;【小问2详解】面积为19、(1),(2)【解析】(1)解不等式求出集合,根据集合的交并补运算可得答案;(2)由集合的包含关系可得答案.【小问1详解】,当时,,∴,,,∴.【小问2详解】由题可知,所以,解得,所以实数m的取值范围为.20、(1)-1(2)-3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030细胞治疗行业政策环境与投资风险评估报告
- 2025年企业市场分析与竞争策略实施手册
- 防鼠培训课件教学
- 化妆品店经营指南(标准版)
- 烟草行业产品销售与服务指南(标准版)
- 物业管理服务标准规范(标准版)
- 包装基础知识培训课件
- 2026年个人情绪管理技巧专业心理辅导师进阶练习题
- 财经知识测试2026年金融市场分析题库
- 信息技术服务运维规范(标准版)
- 2026年铁岭卫生职业学院单招职业技能测试题库附答案详解
- 操作系统安装与配置标准
- 精益生产工作规划
- 二级注册计量师2025年全真模拟测试卷(含答案)
- 2025年广东中考音乐题库及答案
- 口腔医院会员中心
- 冬季交通安全测试题及答案解析
- 2025年国家能源局系统公务员面试模拟题及备考指南
- 脊柱感染护理
- 危险品押运证考试题及答案
- 2025年党建工作应试题库及答案
评论
0/150
提交评论