版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter1WaveNatureofLight
Dr.DaoliZhang
Office:Room409WestBuilding7
Voice:87542894/p>
Email:
zhang_d
aoli@
zhang-daoli@163.com
TextbookandReferences
课程考核
课堂(出勤+评述):20%
课外(练习+阅读):20%
期末考试:60%
致谢
承蒙参考书目、论文、网站为课件提供支持
声明
此课件仅用于课堂教学,不用于各种商业用途
Outline
LightWavesinaHomogeneousMedium
RefractiveIndexandDispersion
GroupVelocityandGroupIndex
MagneticField,Irradiance,andPoyntingVector
Snell’sLawandTotalInternalReflection(TIR)
Fresnel’sEquations
AntireflectionCoatingsandDielectricMirrors
AbsorptionofLightandComplexRefractiveIndex
TemporalandSpatialCoherence
SuperpositionandInterferenceofWaves
MultipleInterferenceandOpticalResonators
DiffractionPrinciples
AdditionalTopics
Interferometers
ThinFilmOptics:MultipleReflectionsinThinFilms
MultipleReflectionsinPlatesandIncoherentWaves
ScatteringofLight
PhotonicCrystals
1.Lightwavesinahomogeneousmedium
A.PlaneElectromagneticWave
Thewavenatureoflight,quiteasidefromitsphotonicbehavioriswellrecognizedbysuchphenomenaasinterferenceanddiffraction.
Wecantreatlightasanelectromagneticwavewithtimevaryingelectricandmagneticfields,thatisExandByrespectively,whicharepropagatingthroughspaceinsuchawaythattheyare
alwaysperpendiculartoeachotherandthedirectionofpropagatingzdepictedinFigure1.
Anelectromagneticwaveisatravelingwavethathastime-varyingelectricandmagneticfieldsthatareperpendiculartoeachotherandthedirectionofpropagationz.
Thesimplesttravelingwaveissinusoidalwavethat,forpropagationalongz,hasthegeneralmathematicform:
Ex=Eocos(tkz+)
Ex=Electricfieldalongxatpositionzattimetk=Propagationconstant=2/
=Wavelength
=Angularfrequency=2frequency)
Eo=Amplitudeofthewave
=Phaseconstant;att=0andz=0,Exmayormaynotnecessarilybezerodependingonthechoiceoforigin.
(tkz+)==Phaseofthewave
Thisisamonochromaticplanewaveofinfiniteextenttravelinginthepositivezdirection.
Wavefront
Asurfaceoverwhichthephaseofawaveisconstantisreferredtoasawavefront.
Awavefrontofaplanewaveisaplaneperpendiculartothedirectionofpropagation.
Theinteractionofalightwavewithanonconductingmedium(conductivity=0)usestheelectricfieldcomponentExratherthanBy.
Why?
OpticalfieldreferstotheelectricfieldEx.
ItistheelectronicfieldExthatdisplacestheelectronicsinmoleculesorionsandgiverisetopolarizationofmatter
AplaneEMwavetravelingalongz,hasthesameEx(orBy)atanypointinagivenxyplane.Allelectricfieldvectorsinagivenxyplanearethereforeinphase.Thexyplanesareofinfiniteextentinthexandydirections.
PhaseVelocity
Thetimeandspaceevolutionofagivenphase,forexamplethatcorrespondingtoamaximumfieldisdescribedby
=tkz+=constant
Duringatimeintervalt,thisconstantphase(andhencethemaximumfield)movesadistancez.Thephasevelocityofthiswaveisthereforez/t.Thephasevelocityvis
vz
t
k
PhasechangeoveradistanceDz
=tkz+
=
kz
Thephasedifferencebetweentwopointsseparatedbyzissimplykz
sincetisthesameforeachpoint
Ifthisphasedifferenceis0ormultiplesof2thenthetwopointsareinphase.Thus,thephasedifferencecanbeexpressedaskzor2z/
ExponentialNotation
Recallthat
cos=Re[exp(j)]
whereRereferstotherealpart.Wethenneedtotaketherealpartofanycomplexresultattheendofcalculations.Thus,
Ex(z,t)=Re[Eoexp(j)expj(tkz)]
or
Ex(z,t)=Re[Ecexpj(tkz)]
whereEc=Eoexp(jo)isacomplexnumberthatrepresentstheamplitudeofthewaveandincludestheconstantphaseinformation
o.
WaveVectororPropagationVector
Directionofpropagationisindicatedwithavectork,calledthewavevector,whosemagnitudeisthepropagationconstant,k=2/.kisperpendiculartoconstantphaseplanes.
Whentheelectromagnetic(EM)waveispropagatingalongsomearbitrarydirectionk,thentheelectricfieldE(r,t)atapointronaplaneperpendiculartokis
E(r,t)=Eocos(tkr+)
Ifpropagationisalongz,krbecomeskz.Ingeneral,ifkhascomponentskx,kyandkzalongx,yandz,thenfromthedefinitionofthedotproduct,kr=kxx+kyy+kzz.
WaveVectork
E(r,t)=Eocos(tkr+)
AtravelingplaneEMwavealongadirectionk
Maxwell’sWaveEquation
(a)Acutof
aplanewaveparalleltothez-axis,theparalleldashed
linesatrightrightanglestothez-directionarewavefronts.Itisanidealizationthatisusefulinanalyzingmanywavephenomena.
Inpractice,therearemanytypesofpossibleEMwaves.Emustobey
Maxwell’sEMwaveequation:
AplanewaveisasolutionofMaxwell’swaveequation
Ex=Eocos(tkz+)
SubstituteintoMaxwell’sEquationtoshowthatthisisasolution.
2E2E2E2E
x2 y2 z2 or ot2 0
AsphericalwaveisdescribedbyatravelingfieldthatemergesfromapointEMsourceandwhoseamplitudedecaywithdistancerfromthesource.Atanypointrfromthesource,thefieldisgivenby
E=Acos(tkr)
Figure1.4(b)illustratedacutofasphericalwavewhereitcanbeseenthatwavefrontsarespherescenteredatthepointsourceO.
Amorepracticalexampleinwhichlightbeamexhibitssome
inevitabledivergencewhilepropagating;thewavefrontsareslowlybentawaytherebyspreadingthewave.
SphericalWave
EAcos(tkr)r
ExamplesofpossibleEMwaves
Opticaldivergencereferstotheangularseparationofwavevectorsonagivenwavefront.
GaussianBeam
TheradiationemittedfromalasercanbeapproximatedbyaGaussianbeam.Gaussianbeamapproximationsarewidelyusedinphotonics.
WavefrontsofaGaussianlightbeam
TheintensityacrossthebeamfollowsaGaussiandistribution
Beamaxis
waistofthebeam
Intensity=I(r,z)=[2P/(w2)]exp(2r2/w2)
2=Farfielddivergence
=w/z=/(wo)
Gaussbeams:Guassianbeamstartsfromafinitewidth2wo(waist,waistradiuswo)wherethewavefrontsareparallelandthenslowlydivergesasthewavefrontscurveoutduringpropagation.Guassianbeamstillhasanexpj(ωt-kz)propagationcharacteristic,buttheamplitude(intensity)variesspatiallyawayfromthebeamaxis,thatisintensityhasaGaussiandistribution.Beamdiameter2w:85%ofthebeampower.
Theincreaseinbeamdiameter2wwithzmakesangle2θ
atO,
whichiscalledthebeamdivergence.
2 4
(20)
TheGaussianIntensityDistributionisNotUnusual
TheGaussianintensitydistributionisalsousedinfiberoptics
ThefundamentalmodeinsinglemodefiberscanbeapproximatedwithaGaussianintensitydistributionacrossthefibercore
I(r)=I(0)exp(2r2/w2)
GaussianBeam
2=Farfielddivergence
zo=wo2/
GaussianBeam
Rayleighrange
1/2
2
z
2w2wo1
2
w
o
1/2
z2
2w2wo1
zo
w2
zo o
RealandIdealGaussianBeams
DefinitionofM2
worr
worr
1/2
2
zM2
M2
2wr2wor1
(/)
wo
2
w
or
RealGaussianBeam
Realbeam
Correctionnote:Page10intextbook,Equation(1.11.1),wshouldbewrasaboveand
wor
shouldbesquaredintheparantheses.
zM221/2
2wr2wor1
w2
or
GaussianBeaminanOpticalCavity
Twosphericalmirrorsreflectwavestoandfromeachother.
Theopticalcavity
containsaGaussianbeam.Thisparticularopticalcavityissymmetricandconfocal;thetwofocalpointscoincideatF.
1/2
z2
z
25m
1
2w2w
2wo (1mm)1.24m20mm
o
z
z
o
o
2.RefractiveIndexandDispersion
WhenanEMwaveistravelinginadielectricmedium,theoscillatingelectricfieldpolarizesthemoleculesofthemediumatthefrequencyofthewave
Thestrongeristheinteractionbetweenthefieldandthedipoles,thesloweristhepropagationofthewave
ForanEMwavetravelinginanonmagneticdielectricmediumof
thephasevelocityvisgivenby
relativepermittivityεr
1
r00
v
εr=1
vvacuum=1/√[ε0μ0=c=3×108ms-1
Theratioofthespeedoflightinfreespacetoitsspeedinamedium
iscalledtherefractiveindexnofthemedium
nc
v
k
=nk
medium
r
λmedium=λ/n
Maxwell’sWaveEquationinanisotropicmedium
E
E
E
2E0
2
2
2
o r o
x2
y2
z2
t2
AplanewaveisasolutionofMaxwell’swaveequation
E=Ecos(tkz+)
x
o
Thephasevelocityofthisplanewaveinthemediumisgivenby
Thephasevelocityinvacuumis
c 1
ko oo
v 1
k oro
PhaseVelocityandr
permittivity r
The
relative
measures
the
ease
with
which
the
of
medium
becomes
polarized
and
hence
itindicates
theextent
interaction
between
the
field
and
the
induced
dipoles.
ForanEMwavetravelinginanonmagneticdielectricmediumof
v
relativepermittivityr,thephasevelocity
isgivenby
ν 1
roo
RefractiveIndexn
PhaseVelocityandr
Refractiveindexn
definition
nc
v r
ν 1
roo
Opticalfrequencies
Typicalfrequenciesthatareinvolvedinoptoelectronicdevicesareintheinfrared(includingfarinfrared),visible,andUV,andwegenericallyrefertothesefrequenciesasopticalfrequenciesSomewhatarbitraryrange:Roughly1012Hzto1016Hz
Lowfrequency(LF)relativepermittivityr(LF)andrefractiveindexn.
RefractiveIndexandPropagationConstant
koko
o
k
Free-spacepropagationconstant(wavevector)2π/
Free-spacewavelength
Propagationconstant(vavevector)inthemediumWavelengthinthemedium
Innoncrystallinematerialssuchasglassesandliquids,thematerialstructureisthesameinalldirectionsandndoesnotdependonthedirection.Therefractiveindexisthenisotropic
nk
ko
RefractiveIndexandWavelength
Itiscustomarytodropthesubscriptoonkand
Infreespace
medium=/n
kmedium=nk
RefractiveIndexandIsotropy
Crystals,ingeneral,havenonisotropic,oranisotropic,properties
Typicallynoncrystallinesolidssuchasglassesandliquids,andcubiccrystalsareopticallyisotropic;theypossessonlyonerefractiveindexforalldirections
ndependsonthewavelength
Dispersionrelation:n=n()
Thesimplestelectronicpolarizationgives
Nat
=Numberofatomsper
unitvolume
Z=Numberofelectronsintheatom(atomicnumber)
o=A“resonantfrequency”
SellmeierEquation
n 1 2 A2 A2
2 2A2 2 2 2 2
1 2 3
1 2 3
NZe2 2 2
n21 at o
m 2c22
o e o
Cauchydispersionrelation:n=n()
n=n-2(h)-2+n0+n2(h)2+n4(h)4
3.GroupVelocityandGroupIndex
Therearenoperfectmonochromaticwaves
Wehavetoconsiderthewayinwhichagroupofwavesdifferingslightlyinwavelengthtravelalongthez-direction
Whentwoperfectlyharmonicwavesoffrequenciesand+
andwavevectorskkandk+kinterfere,theygenerateawavepacketwhichcontainsanoscillatingfieldatthemeanfrequencythatisamplitudemodulatedbyaslowlyvaryingfieldoffrequency
.Themaximumamplitudemoveswithawavevectorkandthus
withagroupvelocitythatisgivenby
d
v
g
dk
GroupVelocity
Twoslightlydifferentwavelengthwavestravelinginthesamedirectionresultinawavepacketthathasanamplitudevariationthattravelsatthegroupvelocity.
d
dk
v
g
GroupVelocity
Considertwosinusoidalwavesthatarecloseinfrequency,thatis,theyhavefrequenciesand+.Theirwavevectorswillbekkandk+k.Theresultantwaveis
Ex(z,t)=Eocos[()t(kk)z]
+Eocos[(+)t(k+k)z]
Byusingthetrigonometricidentity
cosA+cosB=2cos[1/2(AB)]cos[1/2(A+B)]wearriveat
Ex(z,t)=2Eocos[()t(k)z][cos(tkz)]
Ex(z,t)=2Eocos[()t(k)z][cos(tkz)]
Thisrepresentsasinusoidalwaveoffrequency.Thisisamplitudemodulatedbyaveryslowlyvaryingsinusoidaloffrequency.
Thissystemofwaves,i.e.themodulation,travelsalongzataspeeddeterminedbythemodulatingterm,cos[()t(k)z].Themaximuminthefieldoccurswhen[()t(k)z]=2m=constant(misaninteger),whichtravelswithavelocity
dz
or
k
dt
Thisisthegroupvelocityofthewavesbecauseitdeterminesthespeedofpropagationofthemaximumelectricfieldalongz.
v d
g dk
Thegroupvelocitythereforedefinesthespeedwithwhich
energyorinformationispropagated.
=2c/oandk=2n/o,oisthefreespacewavelength.
d=2c/o)do
2
Differentiatetheabove
dn
n(1/)d
/)
do
dn
dk2
(2
2
(2
/)
n
d
2
dk
o
o
o
d
d
o
o
o
o
o
d
(2
c/)d
2
vg
o o
dk
dn
d
(2/)n
2
d
o
o
o
wheren=n()isafunctionofthewavelength.
cdnn
o od
o
v d
g dk
inamediumisgivenby,
Thegroupvelocityvg
Thiscanbewrittenas
v(medium)c
g N
g
v(medium)d c
g dk ndnd
GroupIndex
isdefinedasthegroupindexofthemedium
Ingeneral,formanymaterialstherefractiveindexnandhencethegroupindexNgdependonthewavelengthoflight.Suchmaterialsarecalleddispersive
N ndn
g d
RefractiveindexnandthegroupindexNgofpureSiO2(silica)glassasafunctionofwavelength.
4.MagneticField,Irradianceand
PoyntingVector
Themagneticfield(magneticinduction)componentByalwaysaccompaniesExinanEMwavepropagation.
IfvisthephasevelocityofanEMwaveinanisotropicdielectric
mediumandnistherefractiveindex,then
wherev=(oro)1/2andn=1/2
E vB cB
x y n y
EMwavecarriesenergyalongthedirectionofpropagationk.Whatistheradiationpowerflowperunitarea?
AplaneEMwavetravelingalongkcrossesanareaAatrightanglestothedirectionofpropagation.Intimet,theenergyinthecylindricalvolumeAt(showndashed)flowsthroughA.
EnergyDensityinanEMWave
AstheEMwavepropagatesinthedirectionofthewavevectork,thereisanenergyflowinthisdirection.Thewavebringswithitelectromagneticenergy.
TheenergydensitiesintheExandByfieldsarethesame,
ThetotalenergydensityinthewaveisthereforeorEx2.
1E2 1 B2
2 o r x 2 y
o
PoyntingVectorandEMPowerFlow
IfSistheEMpowerflowperunitarea,
S=Energyflowperunittimeperunitarea
(Avt)(E2)
2
2
vorExvorExBy
o r x
S
At
Inanisotropicmedium,theenergyflowisinthedirectionofwavepropagation.IfweusethevectorsEandBtorepresenttheelectricandmagneticfieldsintheEMwave,thentheEMpowerflowperunitareacanbewrittenas
whereS,calledthePoyntingvector
S=v2orEB
PoyntingVectorandIntensity
SrepresentstheenergyflowperunittimeperunitareainadirectiondeterminedbyEB(directionofpropagation).Itsmagnitude,powerflowperunitarea,iscalledtheirradiance(instantaneousirradiance,orintensity).
Theaverageirradianceis
ISaverage1vorE2
2 o
AverageIrradianceorIntensity
Sincev=c/nandr=n2wecanwrite
cnE
ISaverage
10 )nE
2
3
2
o
(1.33
1
2
o
o
Theinstantaneousirradiancecanonlybemeasuredifthepowermetercanrespondmorequicklythantheoscillationsoftheelectricfield.Sincethisisintheopticalfrequenciesrange,allpracticalmeasurementsyieldtheaverageirradiancebecausealldetectorshavearesponseratemuchslowerthanthefrequencyofthewave.
IrradianceofaSphericalWave
Perfectsphericalwave
I Po
4r2
Sphericalwavefront
Source
O
Po
A
4A
9A
r
2r
3r
I Po
4r2
AGaussianBeam
I(r,z)=[2P/(w2)]exp(2r2/w2)
o=w/z=/(wo)
2o=Farfielddivergence
PowerinaGaussianBeam
I(r)2I(0)2exp[2(r/w)2]
and
Areaofacircularthinstrip(annulus)withradiusris2rdr.PowerpassingthroughthisstripisproportionaltoI(r)(2r)dr
w
I(r)2rdr
0
Fractionofopticalpowerwithin2w
0.865
=
I(r)2rdr
0
5.Snell’sLaworDescartes’sLawand
TotalInternalReflection
Snell'sLaw
sinisint
n2
n1
DerivationofSnell’sLaw
Alightwavetravelinginamediumwithagreaterrefractiveindex(n1>n2)suffersreflectionandrefractionattheboundary.(Noticethattisslightlylongerthan)
Wecanuseconstructiveinterferencetoshowthattherecanonlybeonereflectedwavewhichoccursatanangleequaltotheincidenceangle.ThetwowavesalongAiandBiareinphase.
WhenthesewavesarereflectedtobecomewavesArandBrthentheymuststillbeinphase,otherwisetheywillinterferedestructivelyanddestroyeachother.Theonlywaythetwowavescanstayinphaseisifr=i.AllotheranglesleadtothewavesArandBrbeingoutofphaseandinterferingdestructively.
UnlessthetwowavesatAandBstillhavethesamephase,therewillbenotransmittedwave.AandBpointsonthefrontareonlyinphaseforoneparticulartransmittedangle,t.
IttakestimetforthephaseatBonwaveBitoreachBBB=v1t=ct/n1
Duringthistimet,thephaseAhasprogressedtoA
AA=v2t=ct/n2
AandBbelongtothesamefrontjustlikeAandBsothatABis
perpendiculartokiinmedium1andABisperpendiculartoktinmedium2.Fromgeometricalconsiderations,
AB=BB/siniandAB=AA/sintsothat
v1t
sini
v2t
sint
AB
or
sini v1 n2
sint v2 n1
ThisisSnell'slawwhichrelatestheanglesofincidenceandrefractiontotherefractiveindicesofthemedia.
Whenn1>n2thenobviouslythetransmittedangleisgreaterthantheincidenceangleasapparentinthefigure.Whentherefractionangletreaches90°,theincidenceangleiscalledthecriticalangle
cwhichisgivenby
n2
sin
c
n
1
n1 i n2 t
nsinconstant
sin
sin
Whentheincidenceangleiexceedscthenthereisnotransmittedwavebutonlyareflectedwave.Thelatterphenomenoniscalledtotalinternalreflection(TIR).TIRphenomenonthatleadstothepropagationofwavesinadielectricmediumsurroundedbyamediumofsmallerrefractiveindexasinopticalwaveguides,e.g.opticalfibers.
AlthoughSnell'slawfori>cshowsthatsint>1andhencetisan"imaginary"angleofrefraction,thereishoweveranattenuated
wavecalledtheevanescentwave.
TotalInternalReflection
Lightwavetravelinginamoredensemediumstrikesalessdensemedium.Dependingontheincidenceanglewithrespecttoc,whichisdeterminedbytheratiooftherefractiveindices,thewavemaybetransmitted(refracted)orreflected.
(a)i<c(b)i=c(c)i>candtotalinternalreflection(TIR).
Prisms
LateralDisplacement
dsin cosi
L i1 2 2
(n/n) sini
Lighttravelsbytotalinternalreflectioninopticalfibers
Anopticalfiberlinkfortransmittingdigitalinformationincommunications.Thefibercorehasahigherrefractiveindexsothatthelighttravelsalongthefiberinsidethefibercore
bytotalinternalreflectionatthecore-claddinginterface.
Asmallholeismadeinaplasticbottlefullofwatertogenerateawaterjet.Whentheholeisilluminatedwithalaserbeam(fromagreenlaserpointer),thelightisguidedbytotalinternalreflectionsalongthejettothetray.ThelightguidingbyawaterjetwasfirstdemonstratedbyJean-DanielColladan,aSwissscientist(Waterwithairbubbleswasusedtoincreasethevisibilityoflight.Airbubblesscatterlight.)[Left:Copyright:S.O.Kasap,2005][Right:ComptesRendes,15,800–802,October24,1842;Cnum,ConservatoireNumériquedesArtsetMétiers,France
6.Fresnel'sEquations
Lightwavetravelinginamoredensemediumstrikesalessdensemedium.Theplaneofincidenceistheplaneofthepaperandisperpendiculartotheflatinterfacebetweenthetwomedia.Theelectricfieldisnormaltothedirectionofpropagation.Itcanberesolvedintoperpendicularandparallelcomponents.
Describetheincident,reflectedandrefractedwavesbytheexponentialrepresentationofatravelingplanewave,i.e.
Ei=Eioexpj(tkir)Er=Eroexpj(tkrr)Et=Etoexpj(tktr)
IncidentwaveReflectedwave
Transmittedwave
whereristhepositionvector,thewavevectorski,krandktdescribethedirectionsoftheincident,reflectedandtransmittedwavesandEio,EroandEtoaretherespectiveamplitudes.
Thesearetravelingplanewaves
Anyphasechangessuchasrandtinthereflectedandtransmittedwaveswithrespecttothephaseoftheincidentwaveareincorporatedintothecomplexamplitudes,EroandEto.OurobjectiveistofindEroandEtowithrespecttoEio.
Theelectricandmagneticfieldsanywhereonthewavemustbeperpendiculartoeachotherasarequirementofelectromagneticwavetheory.ThismeansthatwithE//intheEMwavewehaveamagneticfieldBassociatedwithitsuchthat,B(n/c)E//.SimilarlyEwillhaveamagneticfieldB//associatedwithitsuchthatB//(n/c)E.
Weuseboundaryconditions
Etangential(1)=Etangential(2)
Non-magneticmedia(relativepermeability,r=1),
Btangential(1)=Btangential(2)
Usingtheaboveboundaryconditionsforthefieldsaty=0,andtherelationshipbetweentheelectricandmagneticfields,wecanfindthereflectedandtransmittedwavesintermsoftheincidentwave.
Theboundaryconditionscanonlybesatisfiedifthereflectionandincidenceanglesareequal,r=iandtheanglesforthetransmittedandincidentwaveobeySnell'slaw,n1sin1=n2sin2
Ei=Eioexpj(tkir)Er=Eroexpj(tkrr)Et=Etoexpj(tktr)
IncidentwaveReflectedwaveTransmittedwave
Applyingmedium
theboundary
conditionsto
the
EM
wavegoing
from
1
to
2,
the
amplitudes
of
the
reflected
and
transmitted
wavescanbereadilyobtainedintermsofn1,n2andtheincidenceangleialone.TheserelationshipsarecalledFresnel'sequations.Ifwedefinen=n2/n1,astherelativerefractiveindexofmedium2tothatof1,thenthereflectionandtransmissioncoefficientsforEare,
E cosn2sin21/2
r r0, i i1/2
E cos n2 sin2
i0, i i
TherearecorrespondingcoefficientsfortheE//fieldswithcorrespondingreflectionandtransmissioncoefficients,r//andt//,
t Et0,// 2ncosi 1/2
// E n2cos n2sin2
i0,// i i
E n2sin21/2n2cos
r//E n2sin21/2n2cos
r0,// i i
i0,// i i
t Et0, 2cosi 1/2
E cos n2sin2
i0, i i
Further,theabovecoefficientsarerelatedby
r//
=
1
and
+
1
+nt//
r
=t
ForconveniencewetakeEiotobearealnumbersothatphaseanglesofr andt correspondtothephasechangesmeasuredwithrespecttotheincidentwave.
Fornormalincidence(i=0)intoFresnel'sequationswefind,
rr n1n2
// nn
1 2
Internalreflection
Magnitudeofthereflectioncoefficientsr//andrvs.angleofincidenceiforn1
=1.44andn2=1.00.Thecriticalangleis44.
Thecorrespondingchanges//andvs.incidenceangle.
ReflectionandPolarizationAngle
asp,
We
find
a
special
incidence
angle,
labeled
by
solving
the
r//
Fresnelequationfor
=0.Thefieldinthereflectedwaveisthen
alwaysperpendicular
to
the
plane
of
incidence
and
hence
well-
defined.
This
special
angle
is
called
the
polarization
angle
or
Brewster'sangle,
n2
tan
Forbothn1>n2
orn1<n2.
p
n
1
E n2sin21/2n2cos
r//E n2sin21/2n2cos
r0,// i i 0
i0,// i i
PolarizedLight
y
Planeofpolarization
E
x
z
Alinearlypolarizedwavehasitselectricfieldoscillationsdefinedalongalineperpendiculartothedirectionofpropagation,z.ThefieldvectorEandzdefineaplaneofpolarization.
Brewster'sangle
E
Reflectedlightati=phasonlyE
forbothn1>n2
orn1<n2.
TotalInternalReflection
Inlinearlypolarizedlight,however,thefieldoscillationsarecontainedwithinawelldefinedplane.LightemittedfrommanylightsourcessuchasatungstenlightbulboranLEDdiodeisunpolarizedandthefieldisrandomlyorientedinadirectionthatisperpendiculartothedirectionofpropagation.
Atthecriticalangleandbeyond(past44°inthefigure),i.e.when
ic,themagnitudesofboth
r//
and
rgotounitysothatthe
reflectedwavehasthesameamplitudeastheincidentwave.Theincidentwavehassufferedtotalinternalreflection,TIR.
Phasechangeupontotalinternalreflection
Wheni>c,inthepresenceofTIR,thereflectioncoefficientsbecomecomplexquantitiesofthetype
r=1exp(j)andr//=1exp(j)
withthephaseanglesand//beingotherthanzeroor180°.Thereflectedwavethereforesuffersphasechanges,and//,inthe
componentsEandE//.Thesephasechangesdependonthe
incidenceangle,andonnandn.
1
2
Thephasechange
isgivenby
FortheE//component,thephasechange//isgivenby
1/2
sin
n
2
2
tan
1
2
1
2
i
n2cos
//
i
1 sin2n212
tan i
2 cosi
ExternalReflection
Thereflectioncoefficientsr//andrversusangleofincidenceiforn1=1.00andn2=1.44.
EvanescentWave
Ininternalreflection(n1>n2),theamplitudeofthereflectedwavefromTIRisequaltotheamplitudeoftheincidentwavebutitsphasehasshifted.
Whathappenstothetransmittedwavewheni>c?
Accordingtotheboundaryconditions,theremuststillbeanelectricfieldinmedium2,otherwise,theboundaryconditionscannotbesatisfied.Wheni>c,thefieldinmedium2isattenuated(decreaseswithy,andiscalledtheevanescentwave.
Wheni>c,foraplanewavethatisreflected,thereisanevanescentwaveattheboundarypropagatingalongz.
Evanescentwavewhenplanewavesareincidentandreflected
wherekiz=kisiniisthewavevectoroftheincidentwavealongthez-axis,and2isanattenuationcoefficientfortheelectricfieldpenetratingintomedium2
2nn2 1/2
2 2 1sini1
2
n2
y
Et,(y,z,t)e 2 expj(tkizz)
Penetrationdepthofevanescentwave
2=
Attenuationcoefficientfortheelectricfieldpenetratinginto
medium2
Thefieldoftheevanescentwaveise1inmedium2when
y=1/2==Penetrationdepth
2nn2
2 1sin21
2 n i
2
Goos-HänchenShift
Virtualreflectingplane
n2
y
z
A
n1>n2
i
r
z
Reflectedlight
Incidentlight
z=2tani
B d
OpticalTunneling
y
d
z
A
n
>n
i
r
1
2
Reflectedlight
issmall),thefieldpenetratesfromtheABinterface
Incidentlight
Bisthin(thicknessd
Whenmedium
intomediumBandreachesBCinterface,andgivesrisetoatransmittedwaveinmediumC.TheeffectisthetunnelingoftheincidentbeaminAthroughBtoC.Themaximumfield
Emax
oftheevanescentwaveinBdecaysinBalongyandbutisfiniteattheBCboundary
andexcitesthetransmittedwave.
C n1
B n2
BeamSplitters
FrustratedTotalInternalReflection(FTIR)
(b)Twoprismsseparatedbyathinlowrefractiveindexfilmformingabeam-splittercube.TheincidentbeamissplitintotwobeamsbyFTIR.
(a)AlightincidentatthelongfaceofaglassprismsuffersTIR;theprismdeflectsthelight.
Beamsplittercubes(CourtesyofCVIMellesGriot)
Twoprismsseparatedbyathinlowrefractiveindexfilmformingabeam-splittercube.TheincidentbeamissplitintotwobeamsbyFTIR.
OpticalTunneling
Lightpropagationalonganopticalguidebytotalinternalreflections
Couplingoflaserlightintoathinlayer
-opticalguide-usingaprism.Thelight
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云南专升本介绍
- 中国基本法治制度
- 二月的英语介绍
- 2025至2030中国电磁干扰(EMI)屏蔽行业市场现状供需分析及投资评估规划分析研究报告(篇82)
- 2025至2030中国人工智能芯片市场运行分析及发展前景与投资研究报告
- 2026年石家庄市公安局关于公开招聘公安机关警务辅助人员的备考题库及参考答案详解
- 凉州区高坝镇人民政府2025年公开招聘专业化管理大学生村文书(补充)备考题库及完整答案详解1套
- 中国煤炭地质总局2026年度应届生招聘468人备考题库及答案详解一套
- 2026年营口市鲅鱼圈区海星社区卫生服务中心招聘部分专业技术人员的备考题库有答案详解
- 南京鼓楼医院2026年公开招聘卫技人员备考题库及答案详解参考
- 中国痤疮治疗指南
- 继电保护装置调试作业指导书
- 初中语文仿写训练
- 老同学聚会群主的讲话发言稿
- 天然气输气管线阴极保护施工方案
- 高血压问卷调查表
- QC成果提高花岗岩砖铺装质量
- YS/T 416-2016氢气净化用钯合金管材
- GB/T 25156-2010橡胶塑料注射成型机通用技术条件
- GB/T 20878-2007不锈钢和耐热钢牌号及化学成分
- 第六章 亚洲 第一节 概述
评论
0/150
提交评论