




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省新平县一中数学高二第二学期期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.随机变量的分布列为12340.20.30.4则()A.4.8 B.5 C.6 D.8.42.已知函数,则()A. B. C. D.3.与终边相同的角可以表示为A. B.C. D.4.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A. B. C. D.5.已知函数,若,则实数的取值范围是()A. B.C. D.6.复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知随机变量X的分布列如下表所示则的值等于A.1 B.2 C.3 D.48.方程表示双曲线的一个充分不必要条件是()A.-3<m<0 B.-3<m<2C.-3<m<4 D.-1<m<39.已知函数,若且对任意的恒成立,则的最大值是()A.2 B.3 C.4 D.510.抛物线的准线方程为()A. B. C. D.11.函数fx=aexx,x∈1,2,且∀x1A.-∞,4e2 B.4e12.已知三棱柱的侧棱与底面边长都相等,在底面上的射影为的中点,则异面直线与所成的角的余弦值为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设,则等于_________.14.“杨辉三角”是我国数学史上的一个伟大成就,是二项式系数在三角形中的一种几何排列.如图所示,去除所有为1的项,依此构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前46项和为_____.15.已知向量与共线且方向相同,则_____.16.若复数满足(1+i)z=1+i3,则z的模等于三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)若是的极值点,求的值.(2)已知函数,若在区间(0,1)内仅有一个零点,求的取值范围.18.(12分)已知函数,其中为正实数.(1)若函数在处的切线斜率为2,求的值;(2)求函数的单调区间;(3)若函数有两个极值点,求证:19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:万元)对年销售量(单位:吨)和年利润(单位:万元)的影响。对近六年的年宣传费和年销售量的数据作了初步统计,得到如下数据:年份201320142015201620172018年宣传费(万元)384858687888年销售量(吨)16.818.820.722.424.025.5经电脑拟,发现年宣传费(万元)与年销售量(吨)之间近似满足关系式即。对上述数据作了初步处理,得到相关的值如下表:75.324.618.3101.4(1)根据所给数据,求关于的回归方程;(2)规定当产品的年销售量(吨)与年宣传费(万元)的比值在区间内时认为该年效益良好。现从这6年中任选2年,记其中选到效益良好年的数量为,试求随机变量的分布列和期望。(其中为自然对数的底数,)附:对于一组数据,其回归直线中的斜率和截距的最小二乘估计分别为20.(12分)设函数的最小值为.(1)求实数m的值;(2)已知,且满足,求证:.21.(12分)2017年10月18日上午9:00,中国共产党第十九次全国代表大会在人民大会堂开幕.代表第十八届中央委员会向大会作了题为《决胜全面建成小康社会夺取新时代中国特色社会主义伟大胜利》的报告.人们通过手机、电视等方式关注十九大盛况.某调査网站从观看十九大的观众中随机选出200人,经统计这200人中通过传统的传媒方式电视端口观看的人数与通过新型的传媒方式PC端口观看的人数之比为4:1.将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),其中统计通过传统的传媒方式电视端口观看的观众得到的频率分布直方图如图所示(1)求a的值及通过传统的传媒方式电视端口观看的观众的平均年龄(2)把年龄在第1,2,3组的观众称为青少年组,年龄在第4,5组的观众称为中老年组,若选出的200人中通过新型的传媒方式PC端口观看的中老年人有12人,请完成下面2×2列联表,则能否在犯错误的概率不超过0.1的前提下认为观看十九大的方式与年龄有关?通过PC端口观看十九大通过电视端口观看十九大合计青少年中老年合计附:(其中样本容量)22.(10分)(1)求过点且与两坐标轴截距相等的直线的方程;(2)已知直线和圆相交,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:先求出a,再求,再利用公式求.详解:由题得a=1-0.2-0.3-0.4=0.1.由题得.所以所以.故答案为:B.点睛:(1)本题主要考查概率的计算和随机变量的期望的计算,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)若(a、b是常数),是随机变量,则也是随机变量,.2、A【解题分析】
根据分段函数解析式,结合指数幂与对数的运算,即可化简求解.【题目详解】函数则,所以,故选:A.【题目点拨】本题考查了分段函数的求值,指数幂与对数式的运算应用,属于基础题.3、C【解题分析】
将变形为的形式即可选出答案.【题目详解】因为,所以与终边相同的角可以表示为,故选C.【题目点拨】本题考查了与一个角终边相同的角的表示方法,属于基础题.4、A【解题分析】
阳数:,阴数:,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率.【题目详解】因为阳数:,阴数:,所以从阴数和阳数中各取一数差的绝对值有:个,满足差的绝对值为5的有:共个,则.故选:A.【题目点拨】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:.5、A【解题分析】
代入特殊值对选项进行验证排除,由此得出正确选项.【题目详解】若,符合题意,由此排除C,D两个选项.若,则不符合题意,排除B选项.故本小题选A.【题目点拨】本小题主要考查分段函数函数值比较大小,考查特殊值法解选择题,属于基础题.6、D【解题分析】
化简复数为的形式,求得复数对应点的坐标,由此判断所在的象限.【题目详解】,该复数对应的点为,在第四象限.故选D.【题目点拨】本小题主要考查复数的运算,考查复数对应点的坐标所在象限.7、A【解题分析】
先求出b的值,再利用期望公式求出E(X),再利用公式求出.【题目详解】由题得,所以所以.故答案为:A【题目点拨】(1)本题主要考查分布列的性质和期望的计算,意在考查学生对这些知识的掌握水平和分析推理能力.(2)若(a、b是常数),是随机变量,则也是随机变量,,.8、A【解题分析】由题意知,,则C,D均不正确,而B为充要条件,不合题意,故选A.9、B【解题分析】分析:问题转化为对任意恒成立,求正整数的值.设函数,求其导函数,得到其导函数的零点位于内,且知此零点为函数的最小值点,经求解知,从而得到0,则正整数的最大值可求..详解:因为,所以对任意恒成立,
即问题转化为对任意恒成立.
令,则令,则,
所以函数在上单调递增.
因为
所以方程在上存在唯一实根,且满足.
当时,,
即,当时,,即,
所以函数在上单调递减,
在上单调递增.
所以所以
因为),
故整数的最大值是3,
故选:B.点睛:本题考查了利用导数研究函数的单调区间,考查了数学转化思想,解答此题的关键是,如何求解函数的最小值,属难题.10、D【解题分析】根据题意,抛物线y=4x2的标准方程为x2=,其焦点在y轴正半轴上,且p=,则其准线方程为y=﹣;故选:D.11、A【解题分析】
构造函数Fx=fx-x,根据函数的单调性得到F'x≤0在1,2【题目详解】不妨设x1<x2,令Fx=fx-x,则Fx在1,2F'x当x=1时,a∈R,当x∈1,2时,a≤x2所以gx在1,2单调递减,是gxmin【题目点拨】本题考查了函数的单调性,恒成立问题,构造函数Fx=f12、D【解题分析】试题分析:设的中点为,连接,易知即为异面直线与所成的角,设三棱柱的侧棱与底面边长为,则,由余弦定理,得,故选D.考点:异面直线所成的角.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】设,则,则.应填答案。14、【解题分析】
根据“杨辉三角”的特点可知次二项式的二项式系数对应“杨辉三角”中的第行,从而得到第行去掉所有为的项的各项之和为:;根据每一行去掉所有为的项的数字个数成等差数列的特点可求得至第行结束,数列共有项,则第项为,从而加和可得结果.【题目详解】由题意可知,次二项式的二项式系数对应“杨辉三角”中的第行则“杨辉三角”第行各项之和为:第行去掉所有为的项的各项之和为:从第行开始每一行去掉所有为的项的数字个数为:则:,即至第行结束,数列共有项第项为第行第个不为的数,即为:前项的和为:本题正确结果:【题目点拨】本题考查数列求和的知识,关键是能够根据“杨辉三角”的特征,结合二项式定理、等差等比数列求和的方法来进行转化求解,对于学生分析问题和总结归纳的能力有一定的要求,属于较难题.15、3【解题分析】
先根据向量平行,得到,计算出t的值,再检验方向是否相同.【题目详解】因为向量与共线且方向相同所以得.解得或.当时,,不满足条件;当时,,与方向相同,故.【题目点拨】本题考查两向量平行的坐标表示,属于基础题.16、1【解题分析】
利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数z,由此能求出|z|.【题目详解】∵复数满足(1+i)z=1+i∴z=1+∴|z|=1.故答案为1.【题目点拨】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数、复数的摸这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)直接利用函数的导数和函数的极值求出的值.(2)利用函数的导数首先求出函数的单调区间,进一步利用分类讨论思想求出参数的取值范围.【题目详解】解:(1),,因为是的极值点,所以,解得(2),.①当时,当时,单调递增,又因此函数在区间内没有零点.②当时,当时,单调递增,当时,单调递减,又,因此要使函数在区间内有零点,必有,所以,解得,舍去③当时,当时,单调递减,又,因此要使函数在区间内有零点,必有,解得满足条件,综上可得,的取值范围是.【题目点拨】本题考查的知识要点:函数的导数的应用,利用分类讨论思想求出参数的取值范围,主要考察学生的运算能力和转换能力,属于中档题.18、(1)1;(2)见解析;(3)见解析【解题分析】试题分析:(1)根据导数几何意义得,解得的值;(2)先求导数,再根据导函数是否变号分类讨论,最后根据导函数符号确定单调区间(3)先根据韦达定理得,再化简,进而化简所证不等式为,最后利用导函数求函数单调性,进而确定最小值,证得结论试题解析:(1)因为,所以,则,所以的值为1.(2),函数的定义域为,若,即,则,此时的单调减区间为;若,即,则的两根为,此时的单调减区间为,,单调减区间为.(3)由(2)知,当时,函数有两个极值点,且.因为要证,只需证.构造函数,则,在上单调递增,又,且在定义域上不间断,由零点存在定理,可知在上唯一实根,且.则在上递减,上递增,所以的最小值为.因为,当时,,则,所以恒成立.所以,所以,得证.19、(1);(2)见解析.【解题分析】
分析:(1)由数据可得:,从而求可得公式中所需数据,求出,再结合样本中心点的性质可得,进而可得回归方程;(2),结合组合知识,利用古典概型概率公式求出各随机变量对应的概率,从而可得分布列,进而利用期望公式可得的数学期望.详解:(1)由令得,由数据可得:,,于是,得故所求回归方程为(2)条件,于是求出,即6年中有3年是“效益良好年”,,由题得,012所以的分布列如表所示,且。点睛:本题主要考查非线性拟合及非线性回归方程的求解与应用以及离散型随机变量的分布列与期望,属于难题.是源于课本的试题类型,解答非线性拟合问题,先作出散点图,再根据散点图选择合适的函数类型,设出回归方程,利用换元法将非线性回归方程化为线性回归方程,求出样本数据换元后的值,然后根据线性回归方程的计算方法计算变换后的线性回归方程系数,即可求出非线性回归方程.20、(1).(2)证明见解析.【解题分析】
分析:(1)由绝对值三角不等式可得最小值;(2)由(1)已知可变为,,展开后可用基本不等式求得最小值,从而证明结论.详解:(1)函数故的最小值.(2)由(1)得,故,故,当且仅当,即时“”成立.点睛:本题考查绝对值不等式的性质,考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国数字化城市行业发展预测及前景调研研究报告
- 春季小学二年级班主任工作计划
- 病理生理学模考试题含参考答案
- 验光员模拟练习题+参考答案
- 化工生产技术习题+答案
- 职业技术学院2024级国际商务专业人才培养方案
- 2025年江苏省扬州市江都区中考一模英语试题(原卷版+解析版)
- 浙江省强基联盟2024-2025学年高一下学期4月期中英语试题(原卷版+解析版)
- 航空物流运输中的跨境电商物流解决方案考核试卷
- 绢丝在化妆品领域的创新研发与应用实践考核试卷
- 功夫茶泡茶技巧
- 2024年四川省自然资源投资集团有限责任公司招聘笔试参考题库附带答案详解
- CPK计算表格EXCEL模板
- 消防安全知识课件PPT(72张)
- 完整版继电保护定值整定计算书
- 针刺伤的预防及处理(课堂PPT)
- 危岩体稳定性计算--倾倒式
- 煤矿测量技术管理系统规定
- 云南某公司合并财务报表附注
- 南外加试卷精华.doc
- 前牙预备基本原则.ppt
评论
0/150
提交评论