2024届迪庆市重点中学数学八年级第二学期期末学业水平测试模拟试题含解析_第1页
2024届迪庆市重点中学数学八年级第二学期期末学业水平测试模拟试题含解析_第2页
2024届迪庆市重点中学数学八年级第二学期期末学业水平测试模拟试题含解析_第3页
2024届迪庆市重点中学数学八年级第二学期期末学业水平测试模拟试题含解析_第4页
2024届迪庆市重点中学数学八年级第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届迪庆市重点中学数学八年级第二学期期末学业水平测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.直线上两点的坐标分别是,,则这条直线所对应的一次函数的解析式为()A. B. C. D.2.反比例函数y=-6xA.第一、二象限 B.第三、四象限C.第一、三象限 D.第二、四象限3.一名考生步行前往考场,10分钟走了总路程的14,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1A.20分钟B.22分钟C.24分钟D.26分钟4.若有意义,则m能取的最小整数值是()A. B. C. D.5.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于()A. B. C. D.6.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y.则下列图象能大致反映y与x的函数关系的是()A. B. C. D.7.如图,菱形ABCD的对角线AC、BD的长分别是3cm、4cm,AE⊥BC于点E,则AE的长是()A.cm B.cm C.cm D.2cm8.如图,一同学在湖边看到一棵树,他目测出自己与树的距离为20m,树的顶端在水中的倒影距自己5m远,该同学的身高为1.7m,则树高为().A.3.4m B.4.7m C.5.1m D.6.8m9.如图,边长为1的方格纸中有一四边形ABCD(A,B,C,D四点均为格点),则该四边形的面积为()A.4 B.6 C.12 D.2410.如图,四边形ABCD是菱形,DH⊥AB于点H,若AC=8cm,BD=6cm,则DH=()A.5cm B.cm C.cm D.cm11.如图,在△ABC中,点D、E分别是边AB、AC上的点,且DE∥BC,若,DE=3,则BC的长度是()A.6 B.8 C.9 D.1012.计算的结果是()A.2 B. C. D.-2二、填空题(每题4分,共24分)13.如图,OP平分∠MON,PA⊥ON,垂足为A,Q是射线OM上的一个动点,若P、Q两点距离最小为8,则PA=____.14.点A(a,b)是一次函数y=x+2与反比例函数的图像的交点,则__________。15.如图,在平面直角坐标系中有两点A(6,0),B(0,3),如果点C在x轴上(C与A不重合),当点C的坐标为时,△BOC与△AOB相似.16.如图所示,在中,,在同一平面内,将绕点逆时针旋转到△的位置,使,则___.17.若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是______.18.将50个数据分成5组,第1、2、3、4组的频数分别是2、8、10、15,则第5组的频率为_________三、解答题(共78分)19.(8分)如图,正方形ABCD的对角线AC,BD交于点O,DE平分交OA于点E,若,则线段OE的长为________.20.(8分)已知关于x、y的方程组的解满足不等式组.求满足条件的m的整数值.21.(8分)勾股定理神秘而美妙,它的证法多样,其中的“面积法”给了李明灵感,他惊喜地发现;当两个全等的直角三角形如图(1)摆放时可以利用面积法”来证明勾股定理,过程如下如图(1)∠DAB=90°,求证:a2+b2=c2证明:连接DB,过点D作DF⊥BC交BC的延长线于点F,则DF=b-aS四边形ADCB=S四边形ADCB=∴化简得:a2+b2=c2请参照上述证法,利用“面积法”完成如图(2)的勾股定理的证明,如图(2)中∠DAB=90°,求证:a2+b2=c222.(10分)(1)若k是正整数,关于x的分式方程的解为非负数,求k的值;(2)若关于x的分式方程总无解,求a的值.23.(10分)如图,在中,,、分别是、的中点,延长到,使得,连接、.(1)求证:四边形为平行四边形;(2)若四边形的周长是32,,求的面积;(3)在(2)的条件下,求点到直线的距离.24.(10分)某商店以每件50元的价格购进某种品牌衬衫100件,为使这批衬衫尽快出售,该商店先将进价提高到原来的2倍,共销售了10件,再降低相同的百分率作二次降价处理;第一次降价标出了“出厂价”,共销售了40件,第二次降价标出“亏本价”,结果一抢而光,以“亏本价”销售时,每件衬衫仍有14元的利润.(1)求每次降价的百分率;(2)在这次销售活动中商店获得多少利润?请通过计算加以说明.25.(12分)如图,点E是平行四边形ABCD的边BC的中点,连接AE并延长交DC的延长线于点F,连接AC、BF,∠AEC=2∠ABC;(1)求证:四边形ABFC是矩形;(2)在(1)的条件下,若△AFD是等边三角形,且边长为4,求四边形ABFC的面积。26.如图,是边长为2的等边三角形,将沿直线平移到的位置,连接.(1)求平移的距离;(2)求的长.

参考答案一、选择题(每题4分,共48分)1、A【解题分析】

利用待定系数法求函数解析式.【题目详解】解:∵直线y=kx+b经过点P(-20,5),Q(10,20),

∴,

解得,

所以,直线解析式为.

故选:A.【题目点拨】本题主要考查待定系数法求函数解析式,是中考的热点之一,需要熟练掌握.解题的关键是掌握待定系数法.2、D【解题分析】

根据反比例函数的比例系数来判断图象所在的象限,k>0,位于一、三象限;k<0,位于二、四象限.【题目详解】∵y=-6x∴函数图象过二、四象限.故选D.【题目点拨】本题考查反比例函数的图象和性质:当k>0,位于一、三象限;k<0,位于二、四象限,比较简单,容易掌握.3、C【解题分析】试题解析:他改乘出租车赶往考场的速度是14÷2=18,所以到考场的时间是10+34∵10分钟走了总路程的14∴步行的速度=14÷10=1∴步行到达考场的时间是1÷140故选C.考点:函数的图象.4、C【解题分析】

根据二次根式的性质,被开方数大于等于0,即可求解.【题目详解】由有意义,则满足1m-3≥0,解得m≥,即m≥时,二次根式有意义.则m能取的最小整数值是m=1.故选C.【题目点拨】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5、A【解题分析】试题分析:设AB=a,根据题意知AD=2a,由四边形BMDN是菱形知BM=MD,设AM=b,则BM=MD=2a-b.在Rt△ABM中,由勾股定理即可求值.试题解析:∵四边形MBND是菱形,∴MD=MB.∵四边形ABCD是矩形,∴∠A=90°.设AB=a,AM=b,则MB=2a-b,(a、b均为正数).在Rt△ABM中,AB2+AM2=BM2,即a2+b2=(2a-b)2,解得a=,∴MD=MB=2a-b=,∴.故选A.考点:1.矩形的性质;2.勾股定理;3.菱形的性质.6、B【解题分析】通过几个特殊点就大致知道图像了,P点在AD段时面积为零,在DC段先升,在CB段因为底和高不变所以面积不变,在BA段下降,故选B7、B【解题分析】

根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【题目详解】解:∵四边形ABCD是菱形,∴CO=AC=cm,BO=BD=2cm,AO⊥BO,∴BC=cm,∴S菱形ABCD=×3×4=6cm2,∵S菱形ABCD=BC×AE,∴BC×AE=6,∴AE=cm.故选:B.【题目点拨】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.8、C【解题分析】

由入射光线和反射光线与镜面的夹角相等,可得两个相似三角形,根据相似三角形的性质解答即可.【题目详解】解:由题意可得:∠BCA=∠EDA=90°,∠BAC=∠EAD,

故△ABC∽△AED,由相似三角形的性质,设树高x米,

则,

∴x=5.1m.

故选:C.【题目点拨】本题考查相似三角形的应用,关键是由入射光线和反射光线与镜面的夹角相等,得出两个相似三角形.9、C【解题分析】

根据菱形的性质,已知AC,BD的长,然后根据菱形的面积公式可求解.【题目详解】解:由图可知,AB=BC=CD=DA,∴该四边形为菱形,又∵AC=4,BD=6,∴菱形的面积为4×6×=1.故选:C.【题目点拨】主要考查菱形的面积公式:两条对角线的积的一半,同时也考查了菱形的判定.10、C【解题分析】

根据菱形性质在Rt△ABO中利用勾股定理求出AB=5,再根据菱形的面积可得AB×DH=×6×8=1,即可求DH长.【题目详解】由已知可得菱形的面积为×6×8=1.∵四边形ABCD是菱形,∴∠AOB=90°,AO=4cm,BO=3cm.∴AB=5cm.所以AB×DH=1,即5DH=1,解得DH=cm.故选:C.【题目点拨】主要考查了菱形的性质,解决菱形的面积问题一般运用“对角线乘积的一半”和“底×高”这两个公式.11、C【解题分析】根据平行线分线段成比例的性质,由,可得,根据相似三角形的判定与性质,由DE∥BC可知△ADE∽△ABC,可得,由DE=3,求得BC=9.故选:C.12、A【解题分析】

根据分式的混合运算法则进行计算即可得出正确选项。【题目详解】解:=2故选:A【题目点拨】本题考查了分式的四则混合运算,熟练掌握运算法则是解本题的关键.二、填空题(每题4分,共24分)13、1.【解题分析】

根据题意点Q是財线OM上的一个动点,要求PQ的最小值,需要找出满足题意的点Q,根据直线外一点与直结上各点连接的所有绒段中,垂线段最短,所以过点P作PQ垂直OM.此时的PQ最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ.【题目详解】过点P作PQ⊥OM,垂足为Q,则PQ长为P、Q两点最短距离,∵OP平分∠MON,PA⊥ON,PQ⊥OM,∴PA=PQ=1,故答案为1.【题目点拨】此题主要考查了角平分线的性质,本题的关键是要根据直线外一点与直线上各点连接的所有段中,垂线段最短,找出满足题意的点Q的位置.14、-8【解题分析】

把点A(a,b)分别代入一次函数y=x-1与反比例函数,求出a-b与ab的值,代入代数式进行计算即可.【题目详解】∵点A(a,b)是一次函数y=x+2与反比例函数的交点,∴b=a+2,,即a−b=-2,ab=4,∴原式=ab(a−b)=4×(-2)=-8.【题目点拨】反比例函数与一次函数的交点问题,对于本题我们可以先分别把点代入两个函数中,在对函数和所求的代数式进行适当变形,然后整体代入即可.15、(﹣1.5,0),(1.5,0),(﹣6,0)【解题分析】

本题可从两个三角形相似入手,根据C点在x轴上得知C点纵坐标为0,讨论OC与OA对应以及OC与OB对应的情况,分别讨论即可.【题目详解】解:∵点C在x轴上,∴∠BOC=90°,两个三角形相似时,应该与∠BOA=90°对应,若OC与OA对应,则OC=OA=6,C(﹣6,0);若OC与OB对应,则OC=1.5,C(﹣1.5,0)或者(1.5,0).∴C点坐标为:(﹣1.5,0),(1.5,0),(﹣6,0).故答案为(﹣1.5,0),(1.5,0),(﹣6,0).考点:相似三角形的判定;坐标与图形性质.16、40°【解题分析】

由旋转性质可知,,从而可得出为等腰三角形,且和已知,得出的度数.则可得出答案.【题目详解】解:绕点逆时针旋转到△的位置【题目点拨】本题考查了旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解题的关键是抓住旋转变换过程中不变量,判断出是等腰三角形.17、8【解题分析】

解:设边数为n,由题意得,180(n-2)=3603解得n=8.所以这个多边形的边数是8.18、0.3【解题分析】

根据所有数据的频数和为总数量,可用减法求解第五组的评数,用频数除以总数即可.【题目详解】解:∵第1、2、3、4组的频数分别是2、8、10、15,∴50-2-8-10-15=15∴15÷50=0.3故答案为0.3.【题目点拨】此题主要考查了频率的求法,明确用频数除以总数求取频率是解题关键.三、解答题(共78分)19、2-【解题分析】

由正方形的性质可得AB=CD,∠COD=90°,OC=OD,∠ADB=∠ACD=∠CDO=45°,又因DE平分∠ODA,所以∠BDE=∠ADE=1.5°;在△ADE中,根据三角形的内角和定理可得∠CED=2.5°,所以∠CED=∠CDE=2.5°;根据等腰三角形的性质可得CD=CE=2;在等腰Rt△COD中,根据勾股定理求得OC=,由此即可求得OE的长.【题目详解】∵四边形ABCD为正方形,∴AB=CD,∠COD=90°,OC=OD,∠ADB=∠ACD=∠CDO=45°,∵DE平分,∴∠BDE=∠ADE=1.5°,∴∠CDE=∠BDE+∠CDO=2.5°;在△ADE中,根据三角形的内角和定理可得∠CED=2.5°,∴∠CED=∠CDE=2.5°,∴CD=CE=2,在等腰Rt△COD中,根据勾股定理求得OC=,∴OE=CE-OC=2-.故答案为2-.【题目点拨】本题考查了正方形的性质,等腰三角形的判定及勾股定理,正确求得CE的长是解决问题的关键.20、-3,-1.【解题分析】

首先根据方程组可得y=,把y=代入①得:x=m+,然后再把x=m+,y=代入不等式组中得,再解不等式组,确定出整数解即可.【题目详解】①×1得:1x-4y=1m③,②-③得:y=,把y=代入①得:x=m+,把x=m+,y=代入不等式组中得:,解不等式组得:-4≤m≤-,则m=-3,-1.考点:1.一元一次不等式组的整数解;1.二元一次方程组的解.21、见解析.【解题分析】

首先连结BD,过点B作DE边上的高BF,则BF=b-a,表示出S五边形ACBED,两者相等,整理即可得证.【题目详解】证明:连结BD,过点B作DE边上的高BF,则BF=b-a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b1+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c1+a(b-a),∴ab+b1+ab=ab+c1+a(b-a),∴a1+b1=c1.【题目点拨】此题考查了勾股定理的证明,用两种方法表示出五边形ACBED的面积是解本题的关键.22、(1);(2)的值-1,2.【解题分析】

(1)分式方程去分母转化为整式方程,表示出整式方程的解,由解为非负数求出k的范围,即可确定出正整数k的值;(2)分式方程去分母转化为整式方程,分类讨论a的值,使分式方程无解即可.【题目详解】解:(1)由得:,化简得:,因为x是非负数,所以,即,又是正整数,所以;(2)去分母得:,即,若,显然方程无解;若,,当时,不存在;当时,,综合上述:的值为-1,2.【题目点拨】此题考查了分式方程的解,始终注意分式分母不为0这个条件.23、(1)见解析;(2)96;(3)4.8【解题分析】

(1)根据三角形的中位线与平行四边形的判定即可求解;(2)根据平行四边形的性质与勾股定理的应用即可求解;(3)过作,过作交延长线于,根据直角三角形的面积公式即可求解.【题目详解】(1)证明∵,分别是,中点∴,∴,∴,∴四边形为平行四边形(2)∵∴∵,为中点∴∵∴设,∴化简得:解得:∴,∴(3)过作,过作交延长线于,由(1):∴在直角三角形中,,,∴【题目点拨】此题主要考查平行四边形的判定与性质,解题的关键是熟知平行四边形的性质及勾股定理的应用.24、(1)20%;(2)2400元;【解题分析】

(1)设每次降价的百分率为x,根据题意可得等量关系:进价×2×(1﹣降价的百分率)2﹣进价=利润14元,根据等量关系列出方程,再解方程即可;(2)首先计算出销售总款,然后再减去成本可得利润.【题目详解】解:(1)设每次降价的百分率为x,由题意得:50×2(1﹣x)2﹣50=14,解得:x1=0.2=20%.x2=1.8(不合题意舍去),答:每次降价的百分率为20%;(2)10×50×2+40×50×2(1﹣20%)+(100﹣10﹣40)×50×2(1﹣20%)2﹣50×100=2400(元)答:在这次销售活动中商店获得2400元利润.【题目点拨】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.25、(1)见解析;(2).【解题分析】

(1)由ABCD为平行四边形,根据平行四边形的对边平行得到AB与DC平行,根据两直线平行内错角相等得到一对角相等,由E为BC的中点,得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论