2024届安徽省宁国市宁阳学校数学八年级第二学期期末检测试题含解析_第1页
2024届安徽省宁国市宁阳学校数学八年级第二学期期末检测试题含解析_第2页
2024届安徽省宁国市宁阳学校数学八年级第二学期期末检测试题含解析_第3页
2024届安徽省宁国市宁阳学校数学八年级第二学期期末检测试题含解析_第4页
2024届安徽省宁国市宁阳学校数学八年级第二学期期末检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省宁国市宁阳学校数学八年级第二学期期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,在梯形ABCD中,AD//BC,E为BC上一点,DE//AB,AD的长为2,BC的长为4,则CE的长为().A.1 B.2 C.3 D.42.某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y与时间x的关系的大致图象是A. B. C. D.3.二次根式有意义的条件是A. B. C. D.4.若关于的一元二次方程有解,则的值可为()A. B. C. D.5.下列二次根式能与合并为一项的是()A. B. C. D.6.下列二次根式是最简二次根式的是A. B. C. D.7.下列说法正确的有几个()①对角线互相平分的四边形是平行四边形;②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形.A.1个 B.2个 C.3个 D.4个8.顺次连接对角线互相垂直且相等的四边形各边中点所围成的四边形是()A.矩形 B.菱形 C.正方形 D.平行四边形9.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分 B.82分 C.84分 D.86分10.下面式子是二次根式的是()A.a2+1 B.333 C.-1二、填空题(每小题3分,共24分)11.如图,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,且抛物线的解析式为,则半圆圆心M的坐标为______.12.当a=______时,最简二次根式与是同类二次根式.13.计算:的结果是_____.14.如图,Rt△ABC中,∠C=90°,AC=3,BC=1.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S1.则S1﹣S2+S3+S1等于_____.15.如图,△ACB和△ECD都是等腰直角三角形,△ACB的顶点A在△ECD的斜边DE上,若,则=___.16.如图,将直线OA向上平移1个单位,得到一个一次函数的图象,那么这个一次函数的关系式是_______.17.如图,有Rt△ABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形N的面积之和为.18.写一个无理数,使它与的积是有理数:________。三、解答题(共66分)19.(10分)在数学兴趣小组活动中,小明将边长为2的正方形与边长为的正方形按如图1方式放置,与在同一条直线上,与在同一条直线上.(1)请你猜想与之间的数量与位置关系,并加以证明;(2)在图2中,若将正方形绕点逆时针旋转,当点恰好落在线段上时,求出的长;(3)在图3中,若将正方形绕点继续逆时针旋转,且线段与线段相交于点,写出与面积之和的最大值,并简要说明理由.20.(6分)解方程:(1);(2)21.(6分)初三年级学习压力大,放学后在家自学时间较初一、初二长,为了解学生学习时间,该年级随机抽取25%的学生问卷调查,制成统计表和扇形统计图,请你根据图表中提供的信息回答下列问题:学习时间(h)11.522.533.5人数72365418(1)初三年级共有学生_____人.(2)在表格中的空格处填上相应的数字.(3)表格中所提供的学生学习时间的中位数是_____,众数是_____.22.(8分)如图,在平行四边形ABCD中,AE平分∠BAD交BC于点E.(1)作CF平分∠BCD交AD于点F(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,求证:△ABE≌△CDF.23.(8分)为了倡导“节约用水,从我做起”,南沙区政府决定对区直属机关300户家庭的用水情况作一次调查,区政府调查小组随机抽查了其中50户家庭一年的月平均用水量(单位:吨),调查中发现每户用水量均在10﹣14吨/月范围,并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)这50户家庭月用水量的平均数是,众数是,中位数是;(3)根据样本数据,估计南沙区直属机关300户家庭中月平均用水量不超过12吨的约有多少户?24.(8分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF,(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.25.(10分)已知直线l1:y=x+n﹣2与直线l2:y=mx+n相交于点P(1,2).(1)求m,n的值;(2)请结合图象直接写出不等式mx+n>x+n﹣2的解集.(3)若直线l1与y轴交于点A,直线l2与x轴交于点B,求四边形PAOB的面积.26.(10分)在学校组织的八年级知识竞赛中,每班参加比赛的人数相同,成绩分为、、、四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)求一班参赛选手的平均成绩;(2)此次竞赛中,二班成绩在级以上(包括级)的人数有几人?(3)求二班参赛选手成绩的中位数.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】

先证明四边形ABED为平行四边形,再利用平行四边形的性质进行计算即可.【题目详解】∵,,∴四边形ABED为平行四边形,∴AD=BE=1,又∵BC=4,∴CE=BC-BE=4-1=1.故选:B.【题目点拨】本题考查平行四边形的判定与性质,需熟记判定定理及性质.2、B【解题分析】

图象应分三个阶段,第一阶段:匀速跑步到公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:在公园停留了一段时间,这一阶段离家的距离不随时间的变化而改变.故D错误;第三阶段:沿原路匀速步行回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度小于于第一阶段的速度,则C错误.故选B考点:函数的图象【题目点拨】本题考查了函数的图象,理解每阶段中,离家的距离与时间的关系,根据图象的斜率判断运动的速度是解决本题的关键.3、A【解题分析】

根据:二次根式被开方数必须是非负数才有意义.【题目详解】由m-2≥0得,.故选A【题目点拨】本题考核知识点:二次根式有意义条件.解题关键点:熟记二次根式有意义条件.4、A【解题分析】

根据判别式的意义得到△,然后解不等式求出的范围后对各选项进行判断.【题目详解】解:根据题意得:△,解得.故选:.【题目点拨】本题考查了根的判别式:一元二次方程的根与△有如下关系:当△时,方程有两个不相等的实数根;当△时,方程有两个相等的实数根;当△时,方程无实数根.5、A【解题分析】

先根据二次根式的性质把化为最简二次根式,然后再逐项判断找出其同类二次根式即可.【题目详解】解:.A、与是同类二次根式,能合并为一项,所以本选项符合题意;B、,与不是同类二次根式,不能合并为一项,所以本选项不符合题意;C、与不是同类二次根式,不能合并为一项,所以本选项不符合题意;D、,与不是同类二次根式,不能合并为一项,所以本选项不符合题意.故选:A.【题目点拨】本题考查了二次根式的性质和同类二次根式的定义,属于基本知识题型,熟知同类二次根式的定义、熟练掌握二次根式的性质是解题的关键.6、B【解题分析】

化简得到结果,即可作出判断.【题目详解】A.被开方数含分母,故错误;B.正确;C.被开方数含分母,故错误;D.=,故错误;故选:B.【题目点拨】此题考查最简二次根式,解题关键在于检查最简二次根式的两个条件是否同时满足7、C【解题分析】

根据对角线互相平分的四边形是平行四边形;对角线互相平分且垂直的四边形是菱形;对角线互相垂直且相等的平行四边形是正方形;对角线互相平分且相等的四边形是矩形进行分析即可.【题目详解】(1)对角线互相平分的四边形是平行四边形,说法正确;(2)对角线互相垂直的四边形是菱形,说法错误;(3)对角线互相垂直且相等的平行四边形是正方形,说法正确;(4)对角线相等的平行四边形是矩形,说法正确.正确的个数有3个,故选C.【题目点拨】此题主要考查了命题与定理,关键是掌握平行四边形、菱形、矩形和正方形的判定方法.8、C【解题分析】

根据三角形中位线定理得到所得四边形的对边都平行且相等,那么其为平行四边形,再根据邻边互相垂直且相等,可得四边形是正方形.【题目详解】解:∵E、F、G、H分别是AB、BC、CD、AD的中点,∴EH//FG//BD,EF//AC//HG,EH=FG=12BD,EF=HG=12∴四边形EFGH是平行四边形,∵AC⊥BD,AC=BD,∴EF⊥FG,FE=FG,∴四边形EFGH是正方形,故选:C.【题目点拨】本题考查的是三角形中位线定理以及正方形的判定,解题的关键是构造三角形利用三角形的中位线定理解答.9、D【解题分析】试题分析:利用加权平均数的公式直接计算即可得出答案.由加权平均数的公式可知===86考点:加权平均数.10、A【解题分析】分析:直接利用二次根式定义分析得出答案.详解:A、a2+1,∵a2B、333C、-1,无意义,不合题意;D、12a故选A.点睛:此题主要考查了二次根式的定义,正确把握二次根式的定义是解题关键.二、填空题(每小题3分,共24分)11、(1,0).【解题分析】

当y=0时,,解得:x1=﹣1,x2=3,故A(﹣1,0),B(3,0),则AB的中点为:(1,0).故答案为(1,0).12、1.【解题分析】

同类二次根式是指化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.【题目详解】解:∵最简二次根式与是同类二次根式,∴a﹣2=10﹣2a,解得:a=1故答案为:1.【题目点拨】本题考查同类二次根式.13、【解题分析】

逆用积的乘方运算法则以及平方差公式即可求得答案.【题目详解】===(5-4)2018×=+2,故答案为+2.【题目点拨】本题考查了积的乘方的逆用,平方差公式,熟练掌握相关的运算法则是解题的关键.14、2【解题分析】

过F作AM的垂线交AM于D,通过证明S2=SRt△ABC;S3=SRt△AQF=SRt△ABC;S1=SRt△ABC,进而即可求解.【题目详解】解:过F作AM的垂线交AM于D,可证明Rt△ADF≌Rt△ABC,Rt△DFK≌Rt△CAT,所以S2=SRt△ABC.由Rt△DFK≌Rt△CAT可进一步证得:Rt△FPT≌Rt△EMK,∴S3=S△FPT,又可证得Rt△AQF≌Rt△ACB,∴S1+S3=SRt△AQF=SRt△ABC.易证Rt△ABC≌Rt△EBN,∴S1=SRt△ABC,∴S1﹣S2+S3+S1=(S1+S3)﹣S2+S1=SRt△ABC﹣SRt△ABC+SRt△ABC=2﹣2+2=2,故答案是:2.【题目点拨】本题考查正方形的性质及三角形全等的判定与性质,根据已知条件证得S2=SRt△ABC,S3=SRt△AQF=SRt△ABC,S1=SRt△ABC是解决问题的关键.15、【解题分析】

根据等边三角形的性质就可以得出△AEC≌△BDC,就可以得出AE=BD,∠E=∠BDC,由等腰直角三角形的性质就可以得出∠ADB=90°,由勾股定理就可以得出:,再设AE=k,则AD=3k,BD=k,求出BC=k,进而得到的值.【题目详解】∵△ACB与△ECD都是等腰直角三角形,∴∠ECD=∠ACB=90°,∠E=∠ADC=∠CAB=45°,EC=DC,AC=BC,∴,∠ECD−∠ACD=∠ACB−∠ACD,∴∠ACE=∠BCD.在△AEC和△BDC中,,∴△AEC≌△BDC(SAS),∴AE=BD,∠E=∠BDC,∴∠BDC=45°,∴∠BDC+∠ADC=90°,即∠ADB=90°.∴.∵,∴可设AE=k,则AD=3k,BD=k,∴,∴BC=,∴.故答案为:.【题目点拨】此题考查勾股定理、等腰直角三角形、全等三角形的判定与性质,解题关键在于“设k法”列出比例式即可.16、y=2x+1【解题分析】试题分析:由原直线上的两点坐标得到平移后的点的坐标,再用待定系数法即可求出平移后的解析式.解:由图象可知,点(0,0)、(2,4)在直线OA上,∴向上平移1个单位得到的点是(0,1)(2,5),那么这两个点在将直线OA向上平移1个单位,得到一个一次函数的图象y=kx+b上,则b=1,2k+b=5解得:k=2.∴y=2x+1.故答案为:y=2x+1.点睛:本题主要考查待定系数法求一次函数的解析式.解题的关键在于根据图象确定出平移后的点的坐标.17、【解题分析】试题分析:根据勾股定理即可求得结果.由题意得,正方形M与正方形N的面积之和为考点:本题考查的是勾股定理点评:解答本题的关键是根据勾股定理得到最大正方形的面积等于正方形M、N的面积和.18、答案不唯一,如【解题分析】

找出已知式子的分母有理化因式即可.【题目详解】解:因为()()=4-3=1,积是有理数,

故答案为:【题目点拨】此题考查了分母有理化,弄清有理化因式的定义是解本题的关键.三、解答题(共66分)19、(1),,其理由见解析;(2);(3)6【解题分析】

(1)由四边形ABCD与四边形AEFG为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS得到三角形ADG与三角形ABE全等,利用全等三角形对应角相等得∠AGD=∠AEB,如图1所示,延长EB交DG于点H,利用等角的余角相等得到∠DHE=90°,利用垂直的定义即可得DG⊥BE;(2)由四边形ABCD与四边形AEFG为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS得到三角形ADG与三角形ABE全等,利用全等三角形对应边相等得到DG=BE,如图2,连接交于,则=°=,在Rt△AMD中,求出AO的长,即为DO的长,根据勾股定理求出GO的长,进而确定出DG的长,即为BE的长;(3)△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,即当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,即当点H与点A重合时,△BDH的高最大,即可确定出面积的最大值.【题目详解】(1)证明:,,其理由是:在正方形和正方形中,有,,,∴≌,∴,,∵,∴延长交于,则,∴.(2)解:在正方形和正方形中,有,,,∴∴≌,∴连接交于,则,∴,,∴∴(3)与面积之和的最大值为6,其理由是:对于,长一定,当到的长度最大时,的面积最大,由(1)(2))△GHE和△BHD面积之和的最大值为6,理由为:对于△EGH,点H在以EG为直径的圆上,∴当点H与点A重合时,△EGH的高最大;对于△BDH,点H在以BD为直径的圆上,∴当点H与点A重合时,△BDH的高最大,则△GHE和△BHD面积之和的最大值为2+4=6.【题目点拨】本题为几何变换综合题,(1)一般要问两条线段的关系,得分两个方面讨论,一个是长度关系,一个是位置关系(不是平行就是垂直),一般证明长度相等只需要证明三角形全等即可;(2)(1)中已经证明的结论一般为(2)作铺垫,所以只需要求出BE即可求出DG,这里因为出现直角三角形,所求线段的长度,用到了勾股定理;(3)这里主要用到直径所对的圆周角等于90°即可得到H同时在以BD和GH为直径的弦上,此时H在A处时,高最大,为圆的半径.20、(1);(2)【解题分析】

(1)两边开方,即可得出两个一元一次方程,求出方程的解即可;(2)先把方程左边利用十字相乘法分解因式,即可得出两个一元一次方程,求出方程的解即可.【题目详解】解:(1)两边开方得:x-3=±3,

∴x-3=3或x-3=-3,

∴x1=6,x2=0;

(2)2x2+x-1=0,

∴(2x-1)(x+1)=0,

∴2x-1=0或x+1=0,

∴,x2=.【题目点拨】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.21、(1)1440;(2)见解析;(3)2.21、3.1.【解题分析】

(1)先利用学习1小时的人数除以它所占的百分比得调查的总人数,然后用此人数除以21%得到初三年级的人数;(2)用调查的总人数分别乘以20%和30%得到学习1.1小时和3.1小时的人数;(3)根据中位数和众数的定义求解.【题目详解】(1)72÷20%=360,360÷21%=1440,所以初三年级共有学生1440人;(2)学习1.1小时的人数为360×20%=72(人),学习3.1小时的人数为360×30%=108(人);(3)表格中所提供的学生学习时间的中位数是=2.21,众数是3.1.【题目点拨】本题考查了扇形图:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.也考查了众数和中位数.22、见解析【解题分析】

(1)以点C为圆心,任意长为半径画弧,交CD,BC于两点,分别以这两点为圆心,大于这两点距离的一半为半径画弧,在平行四边形内交于一点,过点C以及这个交点作射线,交AD于点F即可;(2)根据ASA即可证明:△ABE≌△CDF.【题目详解】(1)如图所示:CF即为所求作的;(2)∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∠BAD=∠BCD,∵AE平分∠BAD,CF平分∠BCD,∴∠BAE=∠DCF,在△ABE和△CDF中,∴△ABE≌△CDF.【题目点拨】本题考查了平行四边形的性质、全等三角形的判定、尺规作图—作角平分线,熟练掌握尺规作图的方法以及全等三角形的判定方法是解题的关键.23、(1)补图见解析;(2)11.6,11,11;()210户.【解题分析】试题分析:(1)利用总户数减去其他的即可得出答案,再补全即可;(2)利用众数,中位数以及平均数的公式进行计算即可;(3)根据样本中不超过12吨的户数,再估计300户家庭中月平均用水量不超过12吨的户数即可.解:(1)根据条形图可得出:平均用水11吨的用户为:50﹣10﹣5﹣10﹣5=20(户),如图所示:(2)这50个样本数据的平均数是11.6,众数是11,中位数是11;故答案为;11.6,11,11;(3)样本中不超过12吨的有10+20+5=35(户),∴广州市直机关300户家庭中月平均用水量不超过12吨的约有:300×=210(户).点评:本题考查了读统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了众数、中位数的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.24、(1)见解析(2)见解析【解题分析】

(1)根据AAS

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论