2024届浙江省金华市义乌市七校联考中考数学适应性模拟试题含解析_第1页
2024届浙江省金华市义乌市七校联考中考数学适应性模拟试题含解析_第2页
2024届浙江省金华市义乌市七校联考中考数学适应性模拟试题含解析_第3页
2024届浙江省金华市义乌市七校联考中考数学适应性模拟试题含解析_第4页
2024届浙江省金华市义乌市七校联考中考数学适应性模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省金华市义乌市七校联考中考数学适应性模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+12.下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是()A. B. C. D.3.函数在同一直角坐标系内的图象大致是()A. B. C. D.4.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为()A.5 B.6 C.7 D.85.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程为A. B.C. D.6.如图,点A、B在数轴上表示的数的绝对值相等,且,那么点A表示的数是A. B. C. D.37.若式子在实数范围内有意义,则x的取值范围是()A.x>1 B.x>﹣1 C.x≥1 D.x≥﹣18.图(1)是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.2mn B.(m+n)2 C.(m-n)2 D.m2-n29.下列分子结构模型的平面图中,既是轴对称图形又是中心对称图形的有()A.1个 B.2个 C.3个 D.4个10.计算(﹣ab2)3的结果是()A.﹣3ab2 B.a3b6 C.﹣a3b5 D.﹣a3b6二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC、BD,若S四边形ABCD=18,则BD的最小值为_________.12.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.13.有一组数据:3,5,5,6,7,这组数据的众数为_____.14.如图,在△ABC中,BE平分∠ABC,DE∥BC,如果DE=2AD,AE=3,那么EC=_____.15.如图,当半径为30cm的转动轮转过120角时,传送带上的物体A平移的距离为______cm.16.如图,在梯形ACDB中,AB∥CD,∠C+∠D=90°,AB=2,CD=8,E,F分别是AB,CD的中点,则EF=_____.三、解答题(共8题,共72分)17.(8分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.(1)判断直线AC与圆O的位置关系,并证明你的结论;(2)若AC=8,cos∠BED=4518.(8分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连接AP、OP、OA.(1)求证:;(2)若△OCP与△PDA的面积比为1:4,求边AB的长.19.(8分)已知:如图所示,在中,,,求和的度数.20.(8分)在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥EC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项.如图1,求证:∠ANE=∠DCE;如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长.21.(8分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)转动转盘一次,求转出的数字是-2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.22.(10分)某小区为了安全起见,决定将小区内的滑滑板的倾斜角由45°调为30°,如图,已知原滑滑板AB的长为4米,点D,B,C在同一水平地面上,调整后滑滑板会加长多少米?(结果精确到0.01米,参考数据:,,)23.(12分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形AECF的周长.24.如图,已知平行四边形ABCD,点M、N分别是边DC、BC的中点,设=,=,求向量关于、的分解式.

参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】

∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2下边三角形的数字规律为:1+2,2+22,…,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.2、D【解析】A,B,C只能通过旋转得到,D既可经过平移,又可经过旋转得到,故选D.3、C【解析】

根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【详解】当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=->0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选C.4、B【解析】试题分析:连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是线段BD的垂直平分线,∴CD是斜边AB的中线,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故选B.考点:作图—基本作图;含30度角的直角三角形.5、A【解析】

根据题意可得等量关系:原计划种植的亩数改良后种植的亩数亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,根据题意列方程为:.故选:.【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.6、B【解析】

如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点.【详解】解:如图,AB的中点即数轴的原点O.

根据数轴可以得到点A表示的数是.

故选:B.【点睛】此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点确定数轴的原点是解决本题的关键.7、A【解析】

直接利用二次根式有意义的条件分析得出答案.【详解】∵式子在实数范围内有意义,∴x﹣1>0,解得:x>1.故选:A.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.8、C【解析】

解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.故选C.9、C【解析】

根据轴对称图形与中心对称图形的概念求解.【详解】解:A是轴对称图形,不是中心对称图形;B,C,D是轴对称图形,也是中心对称图形.故选:C.【点睛】掌握中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.10、D【解析】

根据积的乘方与幂的乘方计算可得.【详解】解:(﹣ab2)3=﹣a3b6,故选D.【点睛】本题主要考查幂的乘方与积的乘方,解题的关键是掌握积的乘方与幂的乘方的运算法则.二、填空题(本大题共6个小题,每小题3分,共18分)11、6【解析】

过A作AM⊥CD于M,过A作AN⊥BC于N,先根据“AAS”证明△DAM≌△BAN,再证明四边形AMCN为正方形,可求得AC=6,从而当BD⊥AC时BD最小,且最小值为6.【详解】如下图,过A作AM⊥CD于M,过A作AN⊥BC于N,则∠MAN=90°,∠DAM+∠BAM=90°,∠BAM+∠BAN=90°,∴∠DAM=∠BAN.∵∠DMA=∠N=90°,AB=AD,∴△DAM≌△BAN,∴AM=AN,∴四边形AMCN为正方形,∴S四边形ABCD=S四边形AMCN=AC2,∴AC=6,∴BD⊥AC时BD最小,且最小值为6.故答案为:6.【点睛】本题考查了全等三角形的判定与性质,正方形的判定与性质,正确作出辅助线是解答本题的关键.12、【解析】

过点D作DF⊥BC于点F,由菱形的性质可得BC=CD,AD∥BC,可证四边形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函数的性质可求k的值.【详解】如图,过点D作DF⊥BC于点F,∵四边形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四边形DEBF是矩形,∴DF=BE,DE=BF,∵点C的横坐标为5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,设点C(5,m),点D(1,m+3),∵反比例函数y=图象过点C,D,∴5m=1×(m+3),∴m=,∴点C(5,),∴k=5×=,故答案为:【点睛】本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键.13、1【解析】

根据众数的概念进行求解即可得.【详解】在数据3,1,1,6,7中1出现次数最多,所以这组数据的众数为1,故答案为:1.【点睛】本题考查了众数的概念,熟知一组数据中出现次数最多的数据叫做众数是解题的关键.14、1.【解析】

由BE平分∠ABC,DE∥BC,易得△BDE是等腰三角形,即可得BD=2AD,又由平行线分线段成比例定理,即可求得答案.【详解】解:∵DE∥BC,∴∠DEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠DEB,∴BD=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴AD:DB=AE:EC,∴EC=2AE=2×3=1.故答案为:1.【点睛】此题考查了平行线分线段成比例定理以及等腰三角形的判定与性质.注意掌握线段的对应关系是解此题的关键.15、20π【解析】解:=20πcm.故答案为20πcm.16、3【解析】

延长AC和BD,交于M点,M、E、F三点共线,EF=MF-ME.【详解】延长AC和BD,交于M点,M、E、F三点共线,∵∠C+∠D=90°,∴△MCD是直角三角形,∴MF=,同理ME=,∴EF=MF-ME=4-1=3.【点睛】本题考查了直角三角形斜边中线的性质.三、解答题(共8题,共72分)17、(1)AC与⊙O相切,证明参见解析;(2).【解析】试题分析:(1)由于OC⊥AD,那么∠OAD+∠AOC=90°,又∠BED=∠BAD,且∠BED=∠C,于是∠OAD=∠C,从而有∠C+∠AOC=90°,再利用三角形内角和定理,可求∠OAC=90°,即AC是⊙O的切线;(2)连接BD,AB是直径,那么∠ADB=90°,在Rt△AOC中,由于AC=8,∠C=∠BED,cos∠BED=,利用三角函数值,可求OA=6,即AB=12,在Rt△ABD中,由于AB=12,∠OAD=∠BED,cos∠BED=,同样利用三角函数值,可求AD.试题解析:(1)AC与⊙O相切.∵弧BD是∠BED与∠BAD所对的弧,∴∠BAD=∠BED,∵OC⊥AD,∴∠AOC+∠BAD=90°,∴∠BED+∠AOC=90°,即∠C+∠AOC=90°,∴∠OAC=90°,∴AB⊥AC,即AC与⊙O相切;(2)连接BD.∵AB是⊙O直径,∴∠ADB=90°,在Rt△AOC中,∠CAO=90°,∵AC=8,∠ADB=90°,cos∠C=cos∠BED=,∴AO=6,∴AB=12,在Rt△ABD中,∵cos∠OAD=cos∠BED=,∴AD=AB•cos∠OAD=12×=.考点:1.切线的判定;2.解直角三角形.18、(1)详见解析;(2)10.【解析】

①只需证明两对对应角分别相等可得两个三角形相似;故.

②根据相似三角形的性质求出PC长以及AP与OP的关系,然后在Rt△PCO中运用勾股定理求出OP长,从而求出AB长.【详解】①∵四边形ABCD是矩形,∴AD=BC,DC=AB,∠DAB=∠B=∠C=∠D=90°.由折叠可得:AP=AB,PO=BO,∠PAO=∠BAO,∠APO=∠B.∴∠APO=90°.∴∠APD=90°−∠CPO=∠POC.∵∠D=∠C,∠APD=∠POC.∴△OCP∽△PDA.∴.②∵△OCP与△PDA的面积比为1:4,∴OCPD=OPPA=CPDA=14−−√=12.∴PD=2OC,PA=2OP,DA=2CP.∵AD=8,∴CP=4,BC=8.设OP=x,则OB=x,CO=8−x.在△PCO中,∵∠C=90∘,CP=4,OP=x,CO=8−x,∴x2=(8−x)2+42.解得:x=5.∴AB=AP=2OP=10.∴边AB的长为10.【点睛】本题考查了相似三角形的判定与性质以及翻转变换,解题的关键是熟练的掌握相似三角形与翻转变换的相关知识.19、,.【解析】

根据等腰三角形的性质即可求出∠B,再根据三角形外角定理即可求出∠C.【详解】在中,,∵,在三角形中,,又∵,在三角形中,∴.【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知等边对等角.20、(1)见解析;(2);(1)DE的长分别为或1.【解析】

(1)由比例中项知,据此可证△AME∽△AEN得∠AEM=∠ANE,再证∠AEM=∠DCE可得答案;(2)先证∠ANE=∠EAC,结合∠ANE=∠DCE得∠DCE=∠EAC,从而知,据此求得AE=8﹣=,由(1)得∠AEM=∠DCE,据此知,求得AM=,由求得MN=;(1)分∠ENM=∠EAC和∠ENM=∠ECA两种情况分别求解可得.【详解】解:(1)∵AE是AM和AN的比例中项∴,∵∠A=∠A,∴△AME∽△AEN,∴∠AEM=∠ANE,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE;(2)∵AC与NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan∠DCE=tan∠DAC,∴,∵DC=AB=6,AD=8,∴DE=,∴AE=8﹣=,由(1)得∠AEM=∠DCE,∴tan∠AEM=tan∠DCE,∴,∴AM=,∵,∴AN=,∴MN=;(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,∴∠AEC=∠NME,当△AEC与以点E、M、N为顶点所组成的三角形相似时①∠ENM=∠EAC,如图2,∴∠ANE=∠EAC,由(2)得:DE=;②∠ENM=∠ECA,如图1,过点E作EH⊥AC,垂足为点H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE=,设DE=1x,则HE=1x,AH=4x,AE=5x,又AE+DE=AD,∴5x+1x=8,解得x=1,∴DE=1x=1,综上所述,DE的长分别为或1.【点睛】本题是相似三角形的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用等知识点.21、(1);(2).【解析】【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;(2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,∴转动转盘一次,求转出的数字是-2的概率为=;(2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为,所有可能性如下表所示:第一次第二次1-231(1,1)(1,-2)(1,3)-2(-2,1)(-2,-2)(-2,3)3(3,1)(3,-2)(3,3)由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.22、改善

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论