2024届广东省广州市名校联盟八年级数学第二学期期末预测试题含解析_第1页
2024届广东省广州市名校联盟八年级数学第二学期期末预测试题含解析_第2页
2024届广东省广州市名校联盟八年级数学第二学期期末预测试题含解析_第3页
2024届广东省广州市名校联盟八年级数学第二学期期末预测试题含解析_第4页
2024届广东省广州市名校联盟八年级数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省广州市名校联盟八年级数学第二学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.某同学五天内每天完成家庭作业的时间(时)分别为2,3,2,1,2,则对这组数据的下列说法中错误的是()A.平均数是2 B.众数是2 C.中位数是2 D.方差是22.△ABC中,AB=20,AC=13,高AD=12,则△ABC的周长是()A.54 B.44 C.54或44 D.54或333.关于x的不等式2x-a≤-1的解集在数轴上表示如下,则a的取值范围是()A.a≤-1 B.a≤-2 C.a=1 D.a=-24.判断由线段a,b,c能组成直角三角形的是()A.a=32,b=42,c=52B.a=,b=,c=C.a=,b=,c=D.a=3-1,b=4-1,c=5-15.下列二次根式①,②,③,④,能与合并的是()A.①和② B.②和③ C.①和④ D.③和④6.下列交通标志图案是轴对称图形的是()A. B. C. D.7.如图,E为▱ABCD外一点,且EB⊥BC于点B,ED⊥CD于点D,若∠E=50°,则∠A的度数为()A.135° B.125°C.130° D.35°8.我们把宽与长的比值等于黄金比例的矩形称为黄金矩形.如图,在黄金矩形()的边上取一点,使得,连接,则等于()A. B. C. D.9.矩形、菱形、正方形都具有的性质是()A.对角线相等 B.对角线互相平分 C.对角线互相垂直 D.对角线互相平分且相等10.点P(2,3)到y轴的距离是()A.3 B.2 C.1 D.011.一组数据3、2、1、2、2的众数,中位数,方差分别是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.212.若式子有意义,则一次函数的图象可能是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,正方形的定点与正方形的对角线交点重合,正方形和正方形的边长都是,则图中重叠部分的面积是__________.14.二次函数的函数值自变量之间的部分对应值如下表:…014……4…此函数图象的对称轴为_____15.如图,在矩形ABCD中,E、F、G、H分别是四条边的中点,HF=2,EG=4,则四边形EFGH的面积为____________.16.用换元法解方程时,如果设,那么得到关于的整式方程为_____.17.若则关于x的方程的解是___________.18.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.三、解答题(共78分)19.(8分)两个全等的直角三角形重叠放在直线l上,如图①所示,AB=6cm,AC=10cm,∠ABC=90°,将Rt△ABC在直线l上左右平移(如图②).(1)求证:四边形ACFD是平行四边形.(2)怎样移动Rt△ABC,使得四边形ACFD的面积等于△ABC的面积的一半?(3)将Rt△ABC向左平移4cm,求四边形DHCF的面积.20.(8分)如图,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,CF∥AE交DG于F.请你经过观察、猜测线段FC、AE、EF之间是否存在一定的数量关系?若存在,证明你的结论;若不存在,请说明理由.21.(8分)(1)解方程:.(2)先化简,再求值:,其中.22.(10分)如图,平面直角坐标系中,直线分别交x轴、y轴于A、B两点(AOAB)且AO、AB的长分别是一元二次方程x23x20的两个根,点C在x轴负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.23.(10分)已知,如图,O为正方形对角线的交点,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连结DF,交BE的延长线于点G,连结OG.(1)求证:△BCE≌△DCF.(2)判断OG与BF有什么关系,证明你的结论.(3)若DF2=8-4,求正方形ABCD的面积?24.(10分)(1)计算:(2)已知:x=+1,求x2﹣2x的值.25.(12分)解一元二次方程:(1)x2﹣5x﹣1=0(2)(2x﹣3)2=(x+2)226.(1)分解因式:x(x﹣y)﹣y(y﹣x)(2)解不等式组,并把它的解集在数轴上表示出来.

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据众数、中位数、平均数和方差的计算公式分别进行解答,即可得出答案.【详解】解:平均数是:(2+3+2+1+2)÷5=2;数据2出现了3次,次数最多,则众数是2;数据按从小到大排列:1,2,2,2,3,则中位数是2;方差是:[(2﹣2)2+(3﹣2)2+(2﹣2)2+(1﹣2)2+(2﹣2)2]=,则说法中错误的是D;故选D.【点睛】本题考查众数、中位数、平均数和方差,平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量;众数是一组数据中出现次数最多的数.2、C【解析】

根据题意画出示意图进行分析判断,然后根据勾股定理计算出底边BC的长,最后求和即可.【详解】(1)在直角三角形ACD中,有在直角三角形ADB中,有则CB=CD+DB=5+16=21所以三角形的面积为CB+AC+AB=21+13+20=54.(2)在直角三角形ACD中,有在直角三角形ADB中,有则CB=DB-CD=16-5=11所以三角形的面积为CB+AC+AB=11+13+20=44.故答案为:D.【点睛】本题考查了勾股定理的应用,解题关键在于以高为突破点把三角形分为高在三角形内部和外部的两种情况.3、C【解析】

先根据在数轴上表示不等式解集的方法求出不等式的解集,再列出关于a的方程,求出a的取值范围即可.【详解】解:由数轴上表示不等式解集的方法可知,此不等式的解集为x≤0,解不等式2x-a≤-1得,x≤a-12,即a-12=0,解得a=1.故选【点睛】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.4、B【解析】

由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A.,故不是直角三角形,故本选项错误;

B.故是直角三角形,故本选项正确;C.,故不是直角三角形,故本选项错误;

D.a=3-1=2,b=4-1=3,c=5-1=4,由于,故不是直角三角形,故本选项错误.故选:B【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5、C【解析】

先化简各个二次根式,根据只有同类二次根式才能合并即可得出结果.【详解】解:,,,,其中、与是同类二次根式,能与合并;故选:C.【点睛】本题考查了二次根式的化简和同类二次根式的概念,属于基础题,熟练掌握相关知识是解题的关键.6、C【解析】

根据轴对称图形的概念对各选项分析判断后利用排除法求解.【详解】A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.是轴对称图形,故本选项正确;D.不是轴对称图形,故本选项错误;故选C.【点睛】此题考查轴对称图形,解题关键在于识别图形7、C【解析】

首先由四边形内角和定理求出∠C=130°,然后根据平行四边形对角相等可得答案.【详解】解:∵EB⊥BC,ED⊥CD,∠E=50°,∴∠EBC=90°,∠EDC=90°,∴在四边形EBCD中,∠C=360°-∠EBC-∠EDC-∠E=360°-90°-90°-50°=130°,∴在▱ABCD中∠A=∠C=130°,故选:C.【点睛】本题考查了四边形的内角和定理,平行四边形的性质,熟练掌握相关性质定理是解题关键.8、B【解析】

利用黄金矩形的定理求出=,再利用矩形的性质得,代入求值即可解题.【详解】解:∵矩形ABCD中,AD=BC,根据黄金矩形的定义可知=,∵,∴故选B【点睛】本题考查了黄金矩形这一新定义,属于黄金分割概念的拓展,中等难度,读懂黄金矩形的定义,表示出边长比是解题关键.9、B【解析】

矩形、菱形、正方形都是特殊的平行四边形,因而平行四边形的性质就是四个图形都具有的性质.【详解】解:平行四边形的对角线互相平分,而对角线相等、平分一组对角、互相垂直不一定成立.

故平行四边形、矩形、菱形、正方形都具有的性质是:对角线互相平分.

故选:B.【点睛】本题主要考查了正方形、矩形、菱形、平行四边形的性质,理解四个图形之间的关系是解题关键.10、B【解析】

根据点的到y轴的距离等于横坐标的绝对值解答.【详解】解:点P(1,3)到y轴的距离为1.故选:B.【点睛】本题考查了点的坐标,熟记点的到y轴的距离等于横坐标的绝对值,到x轴的距离等于纵坐标的绝对值是解题的关键.11、B【解析】试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为[(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位数是2,众数是2,方差为0.1.故选B.12、A【解析】试题分析:当时,式子有意义,所以k>1,所以1-k<0,所以一次函数的图象过第一三四象限,故选A.考点:1.代数式有意义的条件;2.一次函数图像的性质.二、填空题(每题4分,共24分)13、【解析】

根据题意可得重叠部分的面积和面积相等,求出面积即可.【详解】解:如图,四边形和是正方形又故答案为:1【点睛】本题考查了正方形的性质,将重叠部分的面积进行转化是解题的关键.14、x=2.【解析】

根据抛物线的对称性,x=0、x=4时的函数值相等,然后列式计算即可得解.【详解】∵x=0、x=4时的函数值都是−1,∴此函数图象的对称轴为直线x==2,即直线x=2.故答案为:直线x=2.【点睛】此题考查二次函数的性质,解题关键在于利用其对称性求解.15、4【解析】

根据题意可证明四边形EFGH为菱形,故可求出面积.【详解】∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90°,∵E、F、G、H分别是四条边的中点,∴AE=DG=BE=CG,AH=DH=BF=CF,∴△AEH≌△DGH≌△BEF≌△CGF(SAS),∴EH=EF=FG=GH,∴四边形EFGH是菱形,∵HF=2,EG=4,∴四边形EFGH的面积为HF·EG=×2×4=4.【点睛】此题主要考查菱形的判定与面积求法,解题的关键是熟知特殊平行四边形的性质与判定定理.16、【解析】

将分式方程中的换,则=,代入后去分母即可得到结果.【详解】解:根据题意得:,去分母得:.故答案为:.【点睛】此题考查了换元法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化.17、或【解析】

由,即可得到方程的解.【详解】解:令时,有;令时,有;∴,则关于x的方程的解是:或;故答案为:或.【点睛】本题考查了一元二次方程的解,解题的关键是熟练掌握一元二次方程的解进行解题.18、1【解析】试题分析:此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.首先根据求出外角度数,再利用外角和定理求出边数.∵正多边形的一个内角是140°,∴它的外角是:180°-140°=40°,360°÷40°=1.故答案为1.考点:多边形内角与外角.三、解答题(共78分)19、(1)见解析;(2)将Rt△ABC向左(或右)平移2cm,可使四边形ACFD的面积等于△ABC的面积的一半.(3)18(cm2)【解析】

(1)四边形ACFD为Rt△ABC平移形成的,即可求得四边形ACFD是平行四边形;(2)先根据勾股定理得BC==8(cm),△ABC的面积=24cm2,要满足四边形ACFD的面积等于△ABC的面积的一半,即6×CF=24×,解得CF=2cm,从而求解;(3)将Rt△ABC向右平移4cm,则EH为Rt△ABC的中位线,即可求得△ADH和△CEH的面积,即可解题.【详解】(1)证明:∵四边形ACFD是由Rt△ABC平移形成的,∴AD∥CF,AC∥DF.∴四边形ACFD为平行四边形.(2)解:由题易得BC==8(cm),△ABC的面积=24cm2.要使得四边形ACFD的面积等于△ABC的面积的一半,即6×CF=24×,解得CF=2cm,∴将Rt△ABC向左(或右)平移2cm,可使四边形ACFD的面积等于△ABC的面积的一半.(3)解:将Rt△ABC向左平移4cm,则BE=AD=4cm.又∵BC=8cm,∴CE=4cm=AD.由(1)知四边形ACFD是平行四边形,∴AD∥BF.∴∠HAD=∠HCE.又∵∠DHA=∠EHC,∴△DHA≌△EHC(AAS).∴DH=HE=DE=AB=3cm.∴S△HEC=HE·EC=6cm2.∵△ABC≌△DEF,∴S△ABC=SDEF.由(2)知S△ABC=24cm2,∴S△DEF=24cm2.∴四边形DHCF的面积为S△DEF-S△HEC=24-6=18(cm2).【点睛】本题考查平行四边形的判定、三角形面积和平行四边形面积的计算,还考查了全等三角形的判定、中位线定理,考查了勾股定理在直角三角形中的运用,本题中求△CEH的面积是解题的关键.20、AE=FC+EF,证明见解析.【解析】分析:用AAS证明△AED≌△DFC,根据全等三角形有对应边相等得,AE=DF,DE=CF.详解:AE=FC+EF,证明如下:∵四边形ABCD是正方形,∴AD=DC,∠ADC=90度.又∵AE⊥DG,CF∥AE,∴∠AED=∠DFC=90°,∴∠EAD+∠ADE=∠FDC+∠ADE=90°,∴∠EAD=∠FDC.∴△AED≌△DFC(AAS).∴AE=DF,ED=FC.∵DF=DE+EF,∴AE=FC+EF.点睛:本题考查了正方形的性质和全等三角形的判定与性质,正方形既是轴对称图形又是中心对称图形,所以正方形中的线段之间的关系常用全等三角形来解决.21、(1)x=;(2)x-1,.【解析】

(1)直接找出最简公分母进而去分母解方程得出答案;

(2)首先将括号里面通分运算,再利用分式的混合运算法则计算得出答案.【详解】(1)方程两边同乘以3(x-1)得:

3x-3(x-1)=2x,

解得:x=,

检验:当x=时,3(x-1)≠0,

故x=是原方程的解;

(2)原式=

=x-1,

当时,原式=.【点睛】此题考查解分式方程,分式的混合运算,正确进行分式的混合运算是解题关键.22、(1)A(1,0),C(-3,0);(2)(3)存在,点Q的坐标为(-1,0),(1,2),(1,-2),(1,).【解析】

(1)根据方程求出AO、AB的长,再由AB:AC=1:2求出OC的长,即可得到答案;(2)分点M在CB上时,点M在CB延长线上时,两种情况讨论S与t的函数关系式;(3)分AQ=AB,BQ=BA,BQ=AQ三种情况讨论可求点Q的坐标.【详解】(1)x23x20,(x-1)(x-2)=0,∴x1=1,x2=2,∴AO=1,AB=2,∴A(1,0),,∵AB:AC=1:2,∴AC=2AB=4,∴OC=AC-OA=4-1=3,∴C(-3,0).(2)∵,∴,∵,∴,∴△ABC是直角三角形,且∠ABC=90,由题意得:CM=t,BC=,当点M在CB上时,,②当点M在CB延长线上时,(t>).综上,.(3)存在,①当AB是菱形的边时,如图所示,在菱形AP1Q1B中,Q1O=AO=1,∴Q1(-1,0),在菱形ABP2Q2中,AQ2=AB=2,∴Q2(1,2),在菱形ABP3Q3中,AQ3=AB=2,∴Q3(1,-2);②当AB为菱形的对角线时,如图所示,设菱形的边长为x,则在Rt△AP4O中,,解得x=,∴Q4(1,).综上,平面内满足条件的点Q的坐标为(-1,0),(1,2),(1,-2),(1,).【点睛】此题考查一次函数的综合运用、解一元二次方程,解题过程中注意分类讨论.23、(2)证明见解析.(2)OG∥BF且OG=BF;证明见解析.(3)2.【解析】

(2)利用正方形的性质,由全等三角形的判定定理SAS即可证得△BCE≌△DCF;(2)首先证明△BDG≌△BGF,从而得到OG是△DBF的中位线,即可得出答案;(3)设BC=x,则DC=x,BD=x,由△BGD≌△BGF,得出BF=BD,CF=(-2)x,利用勾股定理DF2=DC2+CF2,解得x2=2,即正方形ABCD的面积是2.【详解】(2)证明:在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)OG∥

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论