2024届山东省济南市玉皇庙中学中考数学押题试卷含解析_第1页
2024届山东省济南市玉皇庙中学中考数学押题试卷含解析_第2页
2024届山东省济南市玉皇庙中学中考数学押题试卷含解析_第3页
2024届山东省济南市玉皇庙中学中考数学押题试卷含解析_第4页
2024届山东省济南市玉皇庙中学中考数学押题试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省济南市玉皇庙中学中考数学押题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠C C.AD∥BC D.AD=BC2.若x=-2是关于x的一元二次方程x2-ax+a2=0的一个根,则a的值为()A.1或4 B.-1或-4 C.-1或4 D.1或-43.已知一组数据2、x、8、1、1、2的众数是2,那么这组数据的中位数是()A.3.1;B.4;C.2;D.6.1.4.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是()A.x1≠x2 B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<05.若※是新规定的某种运算符号,设a※b=b2-a,则-2※x=6中x的值()A.4 B.8 C.2 D.-26.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A. B. C. D.7.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是()A.相交 B.相切 C.相离 D.不能确定8.下列命题中,真命题是()A.对角线互相垂直且相等的四边形是正方形B.等腰梯形既是轴对称图形又是中心对称图形C.圆的切线垂直于经过切点的半径D.垂直于同一直线的两条直线互相垂直9.已知正比例函数的图象经过点,则此正比例函数的关系式为().A. B. C. D.10.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为A.6cm B.cm C.8cm D.cm二、填空题(共7小题,每小题3分,满分21分)11.从1,2,3,4,5,6,7,8这八个数中,任意抽取一个数,这个数恰好是合数的概率是__________.12.阅读下面材料:数学活动课上,老师出了一道作图问题:“如图,已知直线l和直线l外一点P.用直尺和圆规作直线PQ,使PQ⊥l于点Q.”小艾的作法如下:(1)在直线l上任取点A,以A为圆心,AP长为半径画弧.(2)在直线l上任取点B,以B为圆心,BP长为半径画弧.(3)两弧分别交于点P和点M(4)连接PM,与直线l交于点Q,直线PQ即为所求.老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是_____.13.的倒数是_____________.14.已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是_______.15.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____.16.“五一”期间,一批九年级同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费.若设参加游览的同学一共有x人,为求x,可列方程_____.17.分解因式:4m2﹣16n2=_____.三、解答题(共7小题,满分69分)18.(10分)如下表所示,有A、B两组数:第1个数第2个数第3个数第4个数……第9个数……第n个数A组﹣6﹣5﹣2……58……n2﹣2n﹣5B组14710……25……(1)A组第4个数是;用含n的代数式表示B组第n个数是,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明.19.(5分)计算:2sin30°﹣|1﹣|+()﹣120.(8分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:(1)填空:样本中的总人数为;开私家车的人数m=;扇形统计图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?21.(10分)给定关于x的二次函数y=kx2﹣4kx+3(k≠0),当该二次函数与x轴只有一个公共点时,求k的值;当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB=2,求k的值;由于k的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:①与y轴的交点不变;②对称轴不变;③一定经过两个定点;请判断以上结论是否正确,并说明理由.22.(10分)如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.判断AF与⊙O的位置关系并说明理由;若⊙O的半径为4,AF=3,求AC的长.23.(12分)P是外一点,若射线PC交于点A,B两点,则给出如下定义:若,则点P为的“特征点”.当的半径为1时.在点、、中,的“特征点”是______;点P在直线上,若点P为的“特征点”求b的取值范围;的圆心在x轴上,半径为1,直线与x轴,y轴分别交于点M,N,若线段MN上的所有点都不是的“特征点”,直接写出点C的横坐标的取值范围.24.(14分)在我校举办的“读好书、讲礼仪”活动中,各班积极行动,图书角的新书、好书不断增多,除学校购买的图书外,还有师生捐献的图书,下面是九(1)班全体同学捐献图书情况的统计图(每人都有捐书).请你根据以上统计图中的信息,解答下列问题:该班有学生多少人?补全条形统计图.九(1)班全体同学所捐图书是6本的人数在扇形统计图中所对应扇形的圆心角为多少度?请你估计全校2000名学生所捐图书的数量.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据旋转的性质得,∠ABD=∠CBE=60°,∠E=∠C,则△ABD为等边三角形,即AD=AB=BD,得∠ADB=60°因为∠ABD=∠CBE=60°,则∠CBD=60°,所以,∠ADB=∠CBD,得AD∥BC.故选C.2、B【解析】

试题分析:把x=﹣2代入关于x的一元二次方程x2﹣ax+a2=0即:4+5a+a2=0解得:a=-1或-4,故答案选B.考点:一元二次方程的解;一元二次方程的解法.3、A【解析】∵数据组2、x、8、1、1、2的众数是2,∴x=2,∴这组数据按从小到大排列为:2、2、2、1、1、8,∴这组数据的中位数是:(2+1)÷2=3.1.故选A.4、A【解析】分析:A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;C、根据根与系数的关系可得出x1•x2=﹣2,结论C错误;D、由x1•x2=﹣2,可得出x1<0,x2>0,结论D错误.综上即可得出结论.详解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,∴x1≠x2,结论A正确;B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1+x2=a,∵a的值不确定,∴B结论不一定正确;C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,∴x1•x2=﹣2,结论C错误;D、∵x1•x2=﹣2,∴x1<0,x2>0,结论D错误.故选A.点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.5、C【解析】解:由题意得:,∴,∴x=±1.故选C.6、A【解析】

∵Rt△ABC中,∠C=90°,sinA=,∴cosA=,∴∠A+∠B=90°,∴sinB=cosA=.故选A.7、A【解析】试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.解:∵⊙O的半径为3,圆心O到直线L的距离为2,∵3>2,即:d<r,∴直线L与⊙O的位置关系是相交.故选A.考点:直线与圆的位置关系.8、C【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.解答:解:A、错误,例如对角线互相垂直的等腰梯形;B、错误,等腰梯形是轴对称图形不是中心对称图形;C、正确,符合切线的性质;D、错误,垂直于同一直线的两条直线平行.故选C.9、A【解析】

根据待定系数法即可求得.【详解】解:∵正比例函数y=kx的图象经过点(1,﹣3),∴﹣3=k,即k=﹣3,∴该正比例函数的解析式为:y=﹣3x.故选A.【点睛】此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.10、B【解析】试题分析:∵从半径为9cm的圆形纸片上剪去圆周的一个扇形,∴留下的扇形的弧长==12π,根据底面圆的周长等于扇形弧长,∴圆锥的底面半径r==6cm,∴圆锥的高为=3cm故选B.考点:圆锥的计算.二、填空题(共7小题,每小题3分,满分21分)11、.【解析】

根据合数定义,用合数的个数除以数的总数即为所求的概率.【详解】∵在1,2,3,4,5,6,7,8这八个数中,合数有4、6、8这3个,∴这个数恰好是合数的概率是.故答案为:.【点睛】本题考查了概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A);找到合数的个数是解题的关键.12、到线段两端距离相等的点在线段的垂直平分线上或两点确定一条直线或sss或全等三角形对应角相等或等腰三角形的三线合一【解析】

从作图方法以及作图结果入手考虑其作图依据..【详解】解:依题意,AP=AM,BP=BM,根据垂直平分线的定义可知PM⊥直线l.因此易知小艾的作图依据是到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.故答案为到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.【点睛】本题主要考查尺规作图,掌握尺规作图的常用方法是解题关键.13、【解析】先把带分数化成假分数可得:,然后根据倒数的概念可得:的倒数是,故答案为:.14、1或1【解析】

由两圆相切,它们的圆心距为3,其中一个圆的半径为4,即可知这两圆内切,然后分别从若大圆的半径为4与若小圆的半径为4去分析,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得另一个圆的半径.【详解】∵两圆相切,它们的圆心距为3,其中一个圆的半径为4,∴这两圆内切,∴若大圆的半径为4,则另一个圆的半径为:4-3=1,若小圆的半径为4,则另一个圆的半径为:4+3=1.故答案为:1或1【点睛】此题考查了圆与圆的位置关系.此题难度不大,解题的关键是注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系,注意分类讨论思想的应用.15、【解析】试题分析:,解得r=.考点:弧长的计算.16、﹣=1.【解析】原有的同学每人分担的车费应该为,而实际每人分担的车费为,方程应该表示为:﹣=1.故答案是:﹣=1.17、4(m+2n)(m﹣2n).【解析】

原式提取4后,利用平方差公式分解即可.【详解】解:原式=4().故答案为【点睛】本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.三、解答题(共7小题,满分69分)18、(1)3;(2),理由见解析;理由见解析(3)不存在,理由见解析【解析】

(1)将n=4代入n2-2n-5中即可求解;(2)当n=1,2,3,…,9,…,时对应的数分别为3×1-2,3×2-2,3×3-2,…,3×9-2…,由此可归纳出第n个数是3n-2;(3)“在这两组数中,是否存在同一列上的两个数相等”,将问题转换为n2-2n-5=3n-2有无正整数解的问题.【详解】解:(1))∵A组第n个数为n2-2n-5,∴A组第4个数是42-2×4-5=3,故答案为3;(2)第n个数是.理由如下:∵第1个数为1,可写成3×1-2;第2个数为4,可写成3×2-2;第3个数为7,可写成3×3-2;第4个数为10,可写成3×4-2;……第9个数为25,可写成3×9-2;∴第n个数为3n-2;故答案为3n-2;(3)不存在同一位置上存在两个数据相等;由题意得,,解之得,由于是正整数,所以不存在列上两个数相等.【点睛】本题考查了数字的变化类,正确的找出规律是解题的关键.19、4﹣【解析】

原式利用绝对值的代数意义,特殊角的三角函数值,负整数指数幂的法则计算即可.【详解】原式=2×﹣(﹣1)+2=1﹣+1+2=4﹣.【点睛】本题考查了实数的运算,熟练掌握运算法则是解本题的关键.20、(1)80,20,72;(2)16,补图见解析;(3)原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.【解析】试题分析:(1)用乘公交车的人数除以所占的百分比,计算即可求出总人数,再用总人数乘以开私家车的所占的百分比求出m,用360°乘以骑自行车的所占的百分比计算即可得解:样本中的总人数为:36÷45%=80人;开私家车的人数m=80×25%=20;扇形统计图中“骑自行车”的圆心角为360°×(1-10%-25%-45%)=360°×20%=72°.(2)求出骑自行车的人数,然后补全统计图即可.(3)设原来开私家车的人中有x人改为骑自行车,表示出改后骑自行车的人数和开私家车的人数,列式不等式,求解即可.试题解析:解:(1)80,20,72.(2)骑自行车的人数为:80×20%=16人,补全统计图如图所示;(3)设原来开私家车的人中有x人改为骑自行车,由题意得,1580答:原来开私家车的人中至少有50人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数.考点:1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系;4.一元一次不等式的应用.21、(1)(2)1(3)①②③【解析】

(1)由抛物线与x轴只有一个交点,可知△=0;(2)由抛物线与x轴有两个交点且AB=2,可知A、B坐标,代入解析式,可得k值;(3)通过解析式求出对称轴,与y轴交点,并根据系数的关系得出判断.【详解】(1)∵二次函数y=kx2﹣4kx+3与x轴只有一个公共点,∴关于x的方程kx2﹣4kx+3=0有两个相等的实数根,∴△=(﹣4k)2﹣4×3k=16k2﹣12k=0,解得:k1=0,k2=,k≠0,∴k=;(2)∵AB=2,抛物线对称轴为x=2,∴A、B点坐标为(1,0),(3,0),将(1,0)代入解析式,可得k=1,(3)①∵当x=0时,y=3,∴二次函数图象与y轴的交点为(0,3),①正确;②∵抛物线的对称轴为x=2,∴抛物线的对称轴不变,②正确;③二次函数y=kx2﹣4kx+3=k(x2﹣4x)+3,将其看成y关于k的一次函数,令k的系数为0,即x2﹣4x=0,解得:x1=0,x2=4,∴抛物线一定经过两个定点(0,3)和(4,3),③正确.综上可知:正确的结论有①②③.【点睛】本题考查了二次函数的性质,与x、y轴的交点问题,对称轴问题,以及系数与图象的关系问题,是一道很好的综合问题.22、解:(1)AF与圆O的相切.理由为:如图,连接OC,∵PC为圆O切线,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF为圆O的切线,即AF与⊙O的位置关系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E为AC中点,即AE=CE=AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根据勾股定理得:OF=1.∵S△AOF=•OA•AF=•OF•AE,∴AE=.∴AC=2AE=.【解析】试题分析:(1)连接OC,先证出∠3=∠2,由SAS证明△OAF≌△OCF,得对应角相等∠OAF=∠OCF,再根据切线的性质得出∠OCF=90°,证出∠OAF=90°,即可得出结论;(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE.试题解析:(1)连接OC,如图所示:∵AB是⊙O直径,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切线,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切线;(2)∵⊙O的半径为4,AF=3,∠OAF=90°,∴OF==1∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面积=AF•OA=OF•AE,∴3×4=1×AE,解得:AE=,∴AC=2AE=.考点:1.切线的判定与性质;2.勾股定理;3.相似三角形的判定与性质.23、(1)①、;②(2)或,.【解析】

据若,则点P为的“特征点”,可得答案;根据若,则点P为的“特征点”,可得,根据等腰直角三角形的性质,可得答案;根据垂线段最短,可得PC最短,根据等腰直角三

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论