版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省安顺市平坝区第二中学2024届八年级数学第二学期期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.若a>b,则下列式子中正确的是()A.-15a<-15b B.3-a>3-b C.2a2.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=40°,则∠BDC=()A.40° B.80° C.100° D.120°3.如图,在平面直角坐标系中,函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x、y的二元一次方程组A.x=3y=-1. B.x=-3y=1. C.x=3y=1.4.如图,已知直线y=x与双曲线y=(k>0)交于A,B两点,且点A的横坐标为4.点C是双曲线上一点,且纵坐标为8,则△AOC的面积为()A.8 B.32 C.10 D.155.如图,已知一次函数y=kx+b的图象经过点A(5,0)与B(0,﹣4),那么关于x的不等式kx+b<0的解集是()A.x<5 B.x>5 C.x<﹣4 D.x>﹣46.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)7.如图,在ΔABC中,AC=6,BC=8,AB=10,P是AB边上的动点,PE⊥AC,PF⊥BC,则EF的最小值为()A.125 B.245 C.58.在□ABCD中,O是AC、BD的交点,过点O与AC垂直的直线交边AD于点E,若□ABCD的周长为22cm,则△CDE的周长为().A.8cm B.10cm C.11cm D.12cm9.如果分式有意义,则a的取值范围是()A.a为任意实数出 B.a=3 C.a≠0 D.a≠310.下列根式中属最简二次根式的是()A. B. C. D.二、填空题(每小题3分,共24分)11.在正方形ABCD中,对角线AC、BD相交于点O.如果AC=,那么正方形ABCD的面积是__________.12.若分式的值为零,则x的值为_____.13.数据﹣2,﹣1,0,3,5的方差是.14.如图,已知:∠MON=30∘,点A1、A2、A3在射线ON上,点B1、B2、B3...在射线OM上,ΔA1B15.小玲要求△ABC最长边上的高,测得AB=8cm,AC=6cm,BC=10cm,则最长边上的高为_____cm.16.如图,在ABCD中,已知AB=9㎝,AD=6㎝,BE平分∠ABC交DC边于点E,则DE等于_____㎝.17.如图,直线经过点和点,直线经过点,则不等式组的解集是______.18.正方形,,按如图所示放置,点、、在直线上,点、、在x轴上,则的坐标是________.三、解答题(共66分)19.(10分)“绿水青山,就是金山银山”.某旅游景区为了保护环境,需购买A、B两种型号的垃圾处理设备共10台,已知每台A型设备日处理能力为12吨;每台B型设备日处理能力为15吨,购回的设备日处理能力不低于140(1)请你为该景区设计购买A、B(2)已知每台A型设备价格为3万元,每台B型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计的哪种方案,使购买费用最少,为什么?20.(6分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为分.前名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为分),现得知号选手的综合成绩为分.序号笔试成绩/分面试成绩/分(1)求笔试成绩和面试成绩各占的百分比:(2)求出其余两名选手的综合成绩,并以综合成绩排序确定这三名选手的名次。21.(6分)如图,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF⊥DE于点F,连接FC.(1)求证:∠FBC=∠CDF;(2)作点C关于直线DE的对称点G,连接CG,FG,猜想线段DF,BF,CG之间的数量关系,并证明你的结论.22.(8分)解方程组:x23.(8分)如图1,在平面直角坐标系中,O为坐标原点,点A(﹣4,0),直线l∥x轴,交y轴于点C(0,3),点B(﹣4,3)在直线l上,将矩形OABC绕点O按顺时针方向旋转α度,得到矩形OA′B′C′,此时直线OA′、B′C′分别与直线l相交于点P、Q.(1)当α=90°时,点B′的坐标为.(2)如图2,当点A′落在l上时,点P的坐标为;(3)如图3,当矩形OA′B′C′的顶点B′落在l上时.①求OP的长度;②S△OPB′的值是.(4)在矩形OABC旋转的过程中(旋转角0°<α≤180°),以O,P,B′,Q为顶点的四边形能否成为平行四边形?如果能,请直接写出点B′和点P的坐标;如果不能,请简要说明理由.24.(8分)先化简÷(-),然后再从-2<x≤2的范围内选取一个合适的x的整数值代入求值25.(10分)七年级某班体育委员统计了全班同学60秒垫排球次数,并列出下列频数分布表:次数0≤x<1010≤x<2020≤x<3030≤x<4040≤x<5050≤x<60频数14211554(1)全班共有名同学;(2)垫排球次数x在20≤x<40范围的同学有名,占全班人数的%;(3)若使垫排球次数x在20≤x<40范围的同学到九年级毕业时占全班人数的87.12%,则八、九年级平均每年的垫排球次数增长率为多少?26.(10分)如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF,连接EF,分别交AD,BC于点M,N,连接AN,CM.(1)求证:ΔDFM≅ΔBEN;(2)四边形AMCN是平行四边形吗?请说明理由.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
根据不等式的性质即可判断.【详解】∵a>b,∴-1∴3-a<3-b,故B错误;∴2a>2b,故C错误;b-a<0,故D错误;故选A.【点睛】此题主要考查不等式,解题的关键是熟知不等式的性质.2、B【解析】
根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DCA=∠A,根据三角形的外角的性质计算即可.【详解】解:∵DE是线段AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=40°,∴∠BDC=∠DCA+∠A=80°,故选:B.【点睛】本题考查的是线段垂直平分线的性质和三角形的外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.3、B【解析】
由图可知:两个一次函数的交点坐标为(-3,1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【详解】解:因为函数图象交点坐标为两函数解析式组成的方程组的解,
因此方程组y=ax+by=kx的解是x=-3y=1.
故选:【点睛】本题考查一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.4、D【解析】点A的横坐标为4,将x=4代入y=x,得y=2.∴点A的坐标为(4,2).∵点A是直线y=x与双曲线y=(k>0)的交点,∴k=4×2=8,即y=.将y=8代入y=中,得x=1.∴点C的坐标为(1,8).如图,过点A作x轴的垂线,过点C作y轴的垂线,垂足分别为M,N,且AM,CN的反向延长线交于点D,得长方形DMON.易得S长方形DMON=32,S△ONC=4,S△CDA=9,S△OAM=4.∴S△AOC=S长方形DMON-S△ONC-S△CDA-S△OAM=32-4-9-4=15.5、A【解析】由题意可得:一次函数y=kx+b中,y<0时,图象在x轴下方,x<5,则关于x的不等式kx+b<0的解集是x<5,故选A.6、C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.7、B【解析】
先由矩形的判定定理推知四边形PECF是矩形;连接PC,则PC=EF,所以要使EF,即PC最短,只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值.【详解】如图,连接PC.∵在△ABC中,AC=6,BC=8,AB=10,∴AB2=AC2+BC2,∴∠C=90°.又∵PE⊥AC于点E,PF⊥BC于点F.∴∠CEP=∠CFP=90°,∴四边形PECF是矩形.∴PC=EF.∴当PC最小时,EF也最小,即当PC⊥AB时,PC最小,∵12BC•AC=12AB•PC,即PC=∴线段EF长的最小值为245故选B.【点睛】本题考查了勾股定理、矩形的判定与性质、垂线段最短.利用“两点之间垂线段最短”找出PC⊥AB时,PC取最小值是解答此题的关键.8、C【解析】
由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又由平行四边形ABCD的AB+BC=AD+CD=11,继而可得△CDE的周长等于AD+CD.【详解】∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵▱ABCD的周长22厘米,∴AD+CD=11,∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=11cm.
故选:C.【点睛】此题考查了平行四边形的性质,关键是根据线段垂直平分线的性质进行分析.此题难度不大,注意掌握数形结合思想的应用.9、D【解析】
直接利用分式的分母不等于0,进而得出答案.【详解】解:分式有意义,则,解得:.故选:D.【点睛】此题主要考查了分式有意义的条件,正确把握定义是解题关键.10、A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式=;C、原式=2;D、原式=.考点:最简二次根式二、填空题(每小题3分,共24分)11、1【解析】
根据正方形的对角线将正方形分为两个全等的等腰直角三角形,AC是该三角形的斜边,由此根据三角形面积的计算公式得到正方形的面积.【详解】正方形ABCD的一条对角线将正方形分为两个全等的等腰直角三角形,即AC是等腰直角三角形的斜边,∵AC=∴正方形ABCD的面积两个直角三角形的面积和,∴正方形ABCD的面积=,故答案为:1.【点睛】此题考查正方形的性质,等腰直角三角形的性质,正确掌握正方形的性质是解题的关键.12、1【解析】
由题意根据分式的值为0的条件是分子为0,分母不能为0,据此可以解答本题.【详解】解:,则x﹣1=0,x+1≠0,解得x=1.故若分式的值为零,则x的值为1.故答案为:1.【点睛】本题考查分式的值为0的条件,注意掌握分式为0,分母不能为0这一条件.13、.【解析】
试题分析:先根据平均数的计算公式要计算出这组数据的平均数,再根据方差公式进行计算即可.解:这组数据﹣2,﹣1,0,3,5的平均数是(﹣2﹣1+0+3+5)÷5=1,则这组数据的方差是:[(﹣2﹣1)2+(﹣1﹣1)2+(0﹣1)2+(3﹣1)2+(5﹣1)2]=;故答案为.14、32a【解析】
根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4a,A4B4=8B1A2=8a,A5B5=16B1A2…进而得出答案【详解】解:如图∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=a,
∴A2B1=a,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=4a,
A4B4=8B1A2=8a,
A5B5=16B1A2=16a,
以此类推:A6B6=32B1A2=32a.
故答案为:32a.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.15、4.1【解析】
先根据勾股定理的逆定理判断出三角形是直角三角形,然后根据面积法求解.【详解】解:∵,∴该三角形是直角三角形.根据面积法求解:S△ABC=AB•AC=BC•AD(AD为斜边BC上的高),即AD==(cm).故答案为4.1.【点睛】本题主要考查了勾股定理的逆定理,解题的关键是利用两种求三角形面积的方法列等式求解.16、3【解析】
∵BE平分∠ABC,∴∠ABE=∠CBE,又∵∠ABE和∠CEB为内错角,∴∠ABE=∠CEB,∴∠CEB=∠CBE,∴CE=BC=AD=6㎝,∵DC=AB=9㎝,∴DE=3cm.17、【解析】
解不等式2x<kx+b<0的解集,就是指函数图象在A,B之间的部分的自变量的取值范围.【详解】解:根据题意得到y=kx+b与y=2x交点为A(-1,-2),解不等式2x<kx+b<0的解集,就是指函数图象在A,B之间的部分,又B(-2,0),此时自变量x的取值范围,是-2<x<-1.即不等式2x<kx+b<0的解集为:-2<x<-1.故答案为:-2<x<-1.【点睛】本题主要考查一次函数与一元一次方程及一元一次不等式之间的内在联系.根据函数图象即可得到不等式的解集.18、【解析】
先求出A1、A2、A3的坐标,找出规律,即可得出的坐标.【详解】解:∵直线y=x+1和y轴交于A1,
∴A1的坐标(0,1),即OA1=1,
∵四边形C1OA1B1是正方形,
∴OC1=OA1=1,
把x=1代入y=x+1得:y=2,
∴A2的坐标为(1,2),
同理,A3的坐标为(3,4),
…
∴An的坐标为(2n-1-1,2n-1),
∴的坐标是,
故答案为:.【点睛】本题考查了一次函数图象上点的坐标特征以及正方形的性质,通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解决问题的关键.三、解答题(共66分)19、(1)共有4种方案,具体方案见解析;(2)购买A型设备2台、B型设备8台时费用最少.【解析】
(1)设该景区购买A种设备为x台、则B种设备购买(10-x)台,其中0≤x≤10,根据购买的设备日处理能力不低于140吨,列不等式,求出解集后再根据x的范围以及x为整数即可确定出具体方案;(2)针对(1)中的方案逐一进行计算即可做出判断.【详解】(1)设该景区购买设计A型设备为x台、则B型设备购买(10-x)台,其中0≤x≤10,由题意得:12x+15(10-x)≥140,解得x≤103∵0≤x≤10,且x是整数,∴x=3,2,1,0,∴B型相应的台数分别为7,8,9,10,∴共有4种方案:方案一:A型设备3台、B型设备7台;方案二:A型设备2台、B型设备8台;方案三:A型设备1台、B型设备9台;方案四:A型设备0台、B型设备10台.(2)方案二费用最少,理由如下:方案一购买费用:3×3+4.4×7=39.8(万元)<40(万元),∴费用为39.8(万元);方案二购买费用:2×3+4.4×8=41.2(万元)>40(万元),∴费用为41.2×90%=37.08(万元);方案三购买费用:3×1+4.4×9=42.6(万元)>40(万元),∴费用为42.6×90%=38.34(万元);方案四购买费用:4.4×10=44(万元)>40(万元),∴费用为44×90%=39.6(万元).∴方案二费用最少,即A型设备2台、B型设备8台时费用最少.【点睛】本题考查了一元一次不等式的应用、最优购买方案,弄清题意,找到不等关系列出不等式是解题的关键.20、(1)笔试占,面试占;(2)第一名:2号,第二名:1号,第三名:3号.【解析】
(1)设笔试成绩占百分比为,则面试成绩占比为,根据题意列出方程,求解即可;(2)根据笔试成绩和面试成绩各占的百分比,分别求出其余两名选手的综合成绩,即可得出答案.【详解】解:(1)设笔试成绩占百分比为,则面试成绩占比为.由题意,得∴笔试成绩占,面试成绩占.(2)2号选手的综合成绩:3号选手的综合成绩:∴三位选手按综合成绩排名为:第一名:2号,第二名:1号,第三名:3号.【点睛】本题考查了加权平均数和一元一次方程的应用,熟知加权平均数的计算公式是解题的关键.21、(1)见解析,(2)BF=CG+DF.理由见解析.【解析】
(1)由题意可得到∠FBC+∠E=90°,∠CDF+∠E=90°,然后依据余角的性质求解即可;(2)在线段FB上截取FM,使得FM=FD,然后可证明△BDM∽△CDF,由相似三角形的性质可得到BM=FC,然后证明△CFG为等腰直角三角形,从而可得到CG=CF,然后可得到问题的答案.【详解】.解:(1)∵ABCD为正方形,∴∠DCE=90°.∴∠CDF+∠E=90°,又∵BF⊥DE,∴∠FBC+∠E=90°,∴∠FBC=∠CDF(2)如图所示:在线段FB上截取FM,使得FM=FD.∵∠BDC=∠MDF=45°,∴∠BDM=∠CDF,∵,∴△BDM∽△CDF,∴,∠DBM=∠DCF,∴BM=CF,∴∠CFE=∠FCD+∠CDF=∠DBM+∠BDM=∠DMF=45°,∴∠EFG=∠EFC=45°,∴∠CFG=90°,∵CF=FG,∴CG=CF,∴BM=CG,∴BF=BM+FM=CG+DF.【点睛】本题考查四边形综合题、正方形的性质、等腰直角三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.22、y1=4x【解析】
先由①得x=4+y,将x=4+y代入②,得到关于y的一元二次方程,解出y的值,再将y的值代入x=4+y求出x的值即可.【详解】解:x由①得:x=4+y③,把③代入②得:(4+y)2-2y2=(4+y)y,解得:y1=4,y2=-2,代入③得:当y1=4时,x1=8,当y2=-2时,x2=2,所以原方程组的解为:y1=4x故答案为:y1=4x【点睛】本题考查了解高次方程.23、(1)(1,4);(2)(﹣,1);(1)①OP=;②;(4)在矩形OABC旋转的过程中(旋转角0°<α≤180°),以O,P,B′,Q为顶点的四边形能成为平行四边形,此时点B′的坐标为(5,0),点P的坐标为(4,1).【解析】
(1)根据旋转的得到B′的坐标;(2)根据在Rt△OCA′,利用勾股定理即可求解;(1)①根据已知条件得到△CPO≌△A′PB′,设OP=x,则CP=A′P=4﹣x,在Rt△CPO中,利用OP2=OC2+CP2,即x2=(4﹣x)2+12即可求出x的值,即可求解;②根据S△OPB′=PB′•OC即可求解;(4)当点B′落在x轴上时,由OB′∥PQ,OP∥B′Q,此时四边形OPQB′为平行四边形,再根据平行四边形的性质即可求解.【详解】解:(1)∵A(﹣4,0),B(﹣4,1),∴OA=4,AB=1.由旋转的性质,可知:OA′=OA=4,A′B′=AB=1,∴当α=90°时,点B′的坐标为(1,4).故答案为:(1,4).(2)在Rt△OCA′中,OA′=4,OC=1,∴A′C==,∴当点A′落在l上时,点P的坐标为(﹣,1).故答案为:(﹣,1).(1)①当四边形OA′B′C′的顶点B′落在BC的延长线上时,在△CPO和△A′PB′中,,∴△CPO≌△A′PB′(AAS),∴OP=B′P,CP=A′P.设OP=x,则CP=A′P=4﹣x.在Rt△CPO中,OP=x,CP=4﹣x,OC=1,∴OP2=OC2+CP2,即x2=(4﹣x)2+12,解得:x=,∴OP=.②∵B′P=OP=,∴S△OPB′=PB′•OC=××1=.故答案为:.(4)当点B′落在x轴上时,∵OB′∥PQ,OP∥B′Q,∴此时四边形OPQB′为平行四边形.过点A′作A′E⊥x轴于点E,如图4所示.∵OA′=4,A′B′=1,∴OB′==5,A′E==,OE==,∴点B′的坐标为(5,0),点A′的坐标为(,).设直线OA′的解析式为y=kx(k≠0),将A′(,)代入y=kx,得:=k,解得:k=,∴直线OA′的解析式为y=x.当y=1时,有x=1,解得:x=4,∴点P的坐标为(4,1).∴在矩形OABC旋转的过程中(旋转角0°<α≤180°),以O,P,B′,Q为顶点的四边形能成为平行四边形,此时点B′的坐标为(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年湖州市南浔区国有企业紧缺急需人才招聘14人备考题库带答案详解
- 2026年河池市金城江区东江镇卫生院会计岗位公开招聘备考题库含答案详解
- 2025浙商银行嘉兴分行招聘笔试历年典型考题及考点剖析附带答案详解
- 中山市火炬科学技术学校2026年临聘教师招聘备考题库及答案详解一套
- 2025年下半年恒丰银行毕业生招聘笔试历年典型考题及考点剖析附带答案详解
- “百万英才汇南粤”2026年佛山市高明区公开招聘中学教师(第二场)备考题库完整参考答案详解
- 2026年湖北数字文旅集团有限公司招聘备考题库及一套参考答案详解
- 2026年龙岩市第三医院招聘3名编内专业技术人员备考题库及一套参考答案详解
- 2026年镇江华东电力设备制造厂有限公司招聘备考题库及答案详解一套
- 2026年杭州市临平区临平第五中学公开招聘临时聘用教师备考题库及参考答案详解一套
- 建筑垃圾处理及清运方案
- 2025年天翼云认证高级运维工程师理论考试题(附答案)
- 【语文】江苏省南京市瑞金北村小学小学五年级上册期末试题(含答案)
- 温州医科大学学位论文定稿格式注意事项
- 《劳动与社会保障法》期末试题
- 电厂装置性违章培训课件
- 2025年艾滋病防治知识暨反歧视培训试题及答案
- 2025年数字油田市场调研报告
- 国家开放大学《劳动与社会保障法》形考任务1-4参考答案
- 产品包装设计与优化方案模板
- 雨课堂学堂云在线《积极心理学(下自强不息篇 ) 》单元测试考核答案
评论
0/150
提交评论