版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届西藏拉萨市名校八年级数学第二学期期末复习检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,正方形ABCD中,点E在BD上,且,延长CE交AD于F,则为()A. B. C. D.2.下列各曲线中,不能表示y是x的函数的是()A.B.C.D.3.如图,在中,点、分别是、的中点,平分,交于点,若,则的长是()A. B. C. D.4.若A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=图象上的点,且x1<x2<0<x3,则y1、y2、y3的大小关系正确的是()A.y3>y1>y2 B.y1>y2>y3C.y2>y1>y3 D.y3>y2>y15.如图,直线经过和两点,则不等式的解集为()A. B. C. D.6.如图,点A在反比例函数y=kxx<0的图象上,过点A作x轴、y轴的垂线,垂足分别为点B、C,若AB=1.5,AC=4,则kA.-3 B.-4.5 C.6 D.-67.如图,在平面直角坐标系中,▱MNEF的两条对角线ME,NF交于原点O,点F的坐标是(3,2),则点N的坐标为()A.(-3,-2) B.(-3,2) C.(-2,3) D.(2,3)8.已知:如图,在矩形ABCD中,E,F,G,H分别为边AB,BC,CD,DA的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.5 B.4.5 C.4 D.3.59.若关于的分式方程无解,则的值为()A.2 B. C.3 D.10.两组数据:98,99,99,100和98.5,99,99,99.5,则关于以下统计量说法不正确的是()A.平均数相等B.中位数相等C.众数相等D.方差相等11.-个多边形的内角和等于它的外角和的两倍,则这个多边形的边数为()A.6 B.7 C.8 D.912.不论x,y为什么实数,代数式x2+y2+2x-4y+7的值()A.总不小于2 B.总不小于7 C.可为任何实数 D.可能为负数二、填空题(每题4分,共24分)13.一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为_____.14.如图是由5个边长为1的正方形组成了“十”字型对称图形,则图中∠BAC的度数是_________.15.若一元二次方程的两个实数根分别是、,则一次函数的图象一定不经过第____________象限.16.已知:一组邻边分别为和的平行四边形,和的平分线分别交所在直线于点,,则线段的长为________.17.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,BC=8,AB=10,则△FCD的面积为__________.18.当m=_____时,是一次函数.三、解答题(共78分)19.(8分)某养猪场要出售200只生猪,现在市场上生猪的价格为11元/,为了估计这200只生猪能卖多少钱,该养猪场从中随机抽取5只,每只猪的重量(单位:)如下:76,71,72,86,1.(1)计算这5只生猪的平均重量;(2)估计这200只生猪能卖多少钱?20.(8分)甲、乙两人参加射击比赛,两人成绩如图所示.(1)填表:平均数方差中位数众数甲717乙9(2)只看平均数和方差,成绩更好的是.(填“甲”或“乙”)(3)仅就折线图上两人射击命中环数的走势看,更有潜力的是.(填“甲”或“乙”)21.(8分)在平面直角坐标系中,点坐标为,以原点为顶点的四边形是平行四边形,将边沿轴翻折得到线段,连结交线段于点.(1)如图1,当点在轴上,且其坐标为.①求所在直线的函数表达式;②求证:点为线段的中点;(2)如图2,当时,,的延长线相交于点,试求的值.(直接写出答案,不必说明理由)22.(10分)如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.23.(10分)如图,在中,延长至点,使,连接,作于点,交的延长线于点,且.(1)求证:;(2)如果,求的度数.24.(10分)如图1,在中,,,,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作,交AB于点D,连接PQ,点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.直接用含t的代数式分别表示:______,______;是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由.如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.25.(12分)如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC于点E,连接BE,∠A=∠ABE(1)求证:ED平分∠AEB;(2)若AB=AC,∠A=38°,求∠F的度数.26.甲乙两人同时登山,甲乙两人距地面的高度(米与登山时间(分之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山的速度是米分钟,乙在地提速时距地面的高度为米;(2)直接写出甲距地面高度(米和(分之间的函数关系式;(3)若乙提速后,乙的速度是甲登山速度的3倍.请问登山多长时间时,乙追上了甲,此时乙距地的高度为多少米?
参考答案一、选择题(每题4分,共48分)1、B【解析】
先根据正方形的性质得出,再根据等腰三角形的性质、三角形的内角和定理可得,然后根据平行线的性质即可得.【详解】四边形ABCD是正方形,即解得故选:B.【点睛】本题考查了正方形的性质、等腰三角形的性质、平行线的性质等知识点,掌握正方形的性质是解题关键.2、A【解析】试题分析:在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.解:显然B、C、D三选项中,对于自变量x的任何值,y都有唯一的值与之相对应,y是x的函数;A选项对于x取值时,y都有3个或2个值与之相对应,则y不是x的函数;故选:A.3、B【解析】
先证明DE是中位线,由此得到DE∥AB,再根据角平分线的性质得到DF=BD,由此求出答案.【详解】∵点、分别是、的中点,∴DE是△ABC的中位线,BD=BC=3,∴DE∥AB,∴∠ABF=∠DFB,∵平分,∴∠ABF=∠CBF,∴∠DFB=∠CBF,∴BD=FD,∴DF=3,故选:B.【点睛】此题考查三角形的中位线定理,等腰三角形的性质,角平分线的性质,熟记定理并运用解题是关键.4、A【解析】
先根据反比例函数y=的系数1>0判断出函数图象在一、三象限,在每个象限内,y随x的增大而减小,再根据x1<x1<0<x3,判断出y1、y1、y3的大小.【详解】解:∵反比例函数y=的系数3>0,∴该反比例函数的图象如图所示,该图象在第一、三象限,在每个象限内,y随x的增大而减小,又∵x1<x1<0<x3,,∴y3>y1>y1.故选A.5、B【解析】
从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在直线y=1上(或下)方部分所有的点的横坐标所构成的集合.【详解】∵线y=kx+b经过A(1,1)和B(6,0)两点,不等式kx+b<1的解集为x>1.故选B.【点睛】本题考查了一次函数与一元一次不等式的关系,正确理解一次函数与一元一次不等式的关系是解题的关键.6、D【解析】
由AB=1.5,AC=4可以得出矩形ABOC的面积,矩形ABOC的面积等于点A的横纵坐标的积的绝对值,即可得出答案.【详解】设A点的坐标为(x,y)由AB=1.5,AC=4可得矩形ABOC的面积=1.5×4=6∴xy又∵函数图像在第二象限故答案选择D.【点睛】本题考查的是反比例函数的几何意义,在反比例函数y=kx图像中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值7、A【解析】对于平行四边形MNEF,点N的对称点即为点F,所以点F到X轴的距离为2,到Y轴的距离为1.即点N到X、Y轴的距离分别为2、1,且点N在第三象限,所以点N的坐标为(—1,—2)8、C【解析】连接AC,BD,FH,EG,∵四边形ABCD是矩形,∴AC=BD,∵E,F,G,H分别为边AB,BC,CD,DA的中点,∴HG=AC,EF∥AC,EF=AC,EH=BD,GF=BD,∴EH=HG=EF=GF,∴平行四边形EFGH是菱形,∴FH⊥EG,∴阴影部分EFGH的面积是×HF×EG=×2×4=4,故选C.9、A【解析】
分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于1.【详解】解:方程去分母得:x-5=-m解得:x=5-m,当x=3时,分母为1,方程无解,所以5-m=3,即m=2时方程无解。故选:A【点睛】本题考查了分式方程无解的条件,是需要识记的内容.10、D【解析】
根据平均数的计算公式、众数和中位数的概念以及方差的计算公式计算,判断即可.【详解】14(98+99+99+100)=99,14(98.5+99+99+99.5)=99,平均数相等,两组数据:98,99,99,100和98.5,99,99,99.5的中位数都是99,众数是99,则中位数相等,众数相等,B、C不合题意;14[(98﹣99)2+(99﹣99)2+(99﹣99)2+[100﹣99)2]=12,14[(98.5﹣99)2+(99﹣99)2+(99﹣99)2+[99.5﹣99)故选D.【点睛】本题考查了平均数、众数、中位数和方差,掌握它们的概念以及计算公式是解题的关键.11、A【解析】
根据题意得(n-2)•180=720,解得:n=6,故选A.12、A【解析】
把代数式x2+y2+2x-4y+7根据完全平方公式化成几个完全平方和的形式,再进行求解.【详解】解:x2+y2+2x-4y+7=x2+2x+1+y2-4y+4+2=(x+1)2+(y-2)2+2≥2,则不论x,y是什么实数,代数式x2+y2+2x-4y+7的值总不小于2,故选A.二、填空题(每题4分,共24分)13、15或16或1【解析】试题分析:根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论.设新多边形的边数为n,则(n﹣2)•180°=2520°,解得n=16,①若截去一个角后边数增加1,则原多边形边数为1,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为15,故原多边形的边数可以为15,16或1.故答案为15,16或1.考点:多边形内角和与外角和.14、45.【解析】
连接BC,通过计算可得AB=BC,再利用勾股定理逆定理证明△ABC是等腰直角三角形,从而得出结果.【详解】解:连接BC,因为每个小正方形的边长都是1,由勾股定理可得,,,∴AB=BC,,∴∠ABC=90°.∴∠BAC=∠BCA=45°.故答案为45°.【点睛】本题考查了勾股定理及其逆定理、等腰直角三角形的判定和性质,解题的关键是连接BC,构造等腰直角三角形,而通过作辅助线构造特殊三角形也是解决角度问题的常见思路和方法.15、四【解析】
根据根与系数的关系可得出a+b=1、ab=4,再结合一次函数图象与系数的关系,即可得出一次函数y=abx+a+b的图象经过的象限,此题得解.【详解】解:∵一元二次方程的两个实数根分别是a、b,∴a+b=1,ab=4,∴一次函数的解析式为y=4x+1.∵4>0,1>0,∴一次函数y=abx+a+b的图象经过第一、二、三象限,不经过第四象限,故答案为:四.【点睛】本题考查了根与系数的关系以及一次函数图象与系数的关系,利用根与系数的关系结合一次函数图象与系数的关系,找出一次函数图象经过的象限是解题的关键.16、或【解析】
利用当AB=10cm,AD=6cm,由于平行四边形的两组对边互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,则DE=AD=6cm;同理可得:CF=CB=6cm,而EF=CF+DE-DC,由此可以求出EF长;同理可得:当AD=10cm,AB=6cm时,可以求出EF长【详解】解:如图1,当AB=10cm,AD=6cm∵AE平分∠BAD∴∠BAE=∠DAE,又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED,则AD=DE=6cm同理可得:CF=CB=6cm∵EF=DE+CF-DC=6+6-10=2(cm)如图2,当AD=10cm,AB=6cm,∵AE平分∠BAD,∴∠BAE=∠DAE又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED则AD=DE=10cm同理可得,CF=CB=10cmEF=DE+CF-DC=10+10-6=14(cm)故答案为:2或14.图1图2【点睛】本题主要考查了角平分线的定义、平行四边形的性质、平行线的性质等知识,关键是平行四边形的不同可能性进行分类讨论.17、2.【解析】
根据题意可证△ADE≌△ACD,可得AE=AC=2,CD=DE,根据勾股定理可得DE,CD的长,再根据勾股定理可得FC的长,即可求△FCD的面积.【详解】∵AD是∠BAC的平分线,DE⊥AB于E,∠C=90°∴CD=DE∵CD=DE,AD=AD∴Rt△ACD≌Rt△ADE∴AE=AC∵在Rt△ABC中,AC==2∴AE=2∴BE=AB-AE=4∵在Rt△DEB中,BD1=DE1+BE1.∴DE1+12=(8-DE)1∴DE=3即BD=5,CD=3∵BD=DF∴DF=5在Rt△DCF中,FC==4∴△FCD的面积为=×FC×CD=2故答案为2.【点睛】本题考查了全等三角形的性质和判定,角平分线的性质,勾股定理,关键是灵活运用这些性质解决问题.18、3或0【解析】
根据一次函数的定义即可求解.【详解】依题意得m-3≠0,2m+1=1或m-3=0,解得m=0或m=3,故填:3或0.【点睛】此题主要考查一次函数的定义,解题的关键是熟知一次函数的特点.三、解答题(共78分)19、(1)78.4(千克);(2)172480(元).【解析】
(1)根据平均数的计算可得这5只生猪的平均重量;(2)根据用样本估计总体的思想可估计这200只生猪每只生猪的平均重量,由(1)中的平均数可得.【详解】解:(1)这5只生猪的平均重量为千克;(2)根据用样本估计总体的思想可估计这200只生猪每只生猪的平均重量约为千克;
根据题意,生猪的价格为11元,
故这200只生猪能卖元.【点睛】本题主要考查的是通过样本估计总体.统计的思想就是用样本的信息来估计总体的信息.20、(1)7,7,8,9;(2)甲;(3)乙【解析】
(1)根据图表,把乙的所有数据相加除以6,可求乙的平均数,由中位数,众数的定义即可求出相应的数据;(2)因为甲、乙平均数相同,从方差来看,方差越小成绩越稳定即可得;(3)从图表走势看,乙命中的环数越来越高,而且最高1环,所以乙最有潜力.【详解】(1)乙的数据分别为1,6,7,9,9,1.∴平均数为:(1+6+7+9+9+1)÷6=7,众数为9,中位数为:(7+9)÷2=8,甲的数据为:5,7,7,8,8,7,所以众数为7,故答案为:7,7,8,9;填表:平均数方差中位数众数甲7177乙7989(2)因为甲、乙的平均数都是7,所以方差越小越稳定,∴甲成绩更好,故答案为:甲;(3)从图表看出,乙中的环数越来越高,而且有最高1环,所以乙最有潜力,故答案为:乙.【点睛】考查了平均数,中位数,众数的概念,以及方差的意义,由数据和图表会分析成绩的稳定性和更好的趋势.21、(1)①;②详见解析;(2)【解析】
(1)①根据四边形是平行四边形,得,根据,,得.根据翻折得到线段,得.设直线的函数表达式为,利用待定系数法确定函数关系式即可求解;②根据平行四边形的性质求证,即可得点为线段的中点.(2)连接交轴于点.证明为的中点,得出点为线段的中点,过点作交于点,根据平行线分线段成比例定理得到,还可得到等腰直角,故,求得.【详解】解:(1)①∵四边形是平行四边形,∴,.又∵点落在轴上,∴轴,∴轴.∵,,∴.又∵边沿轴翻折得到线段,∴.设直线的函数表达式为,∴,解得.∴所在直线的函数表达式为.②证明:∵四边形是平行四边形,∴,,∴.∵边沿轴翻折得到线段,∴,∴.又∵,∴,∴,即点为线段的中点.(2).连接交轴于点.∴为的中点;∴由(1)可得出点为线段的中点,∵边沿轴翻折得到线段且,∴,.∵,∴.过点作交于点,可得,得到等腰直角.∴.∴.【点睛】本题考查了四边形的性质,图形翻折,以及转化的数学思想.第(2)问将线段比值放在同一个三角形中,去证明三角形是等腰直角三角形,从而求得线段的比值.22、(1)m=2,l2的解析式为y=2x;(2)S△AOC﹣S△BOC=15;(3)k的值为或2或﹣.【解析】【分析】(1)先求得点C的坐标,再运用待定系数法即可得到l2的解析式;(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,再根据A(10,0),B(0,5),可得AO=10,BO=5,进而得出S△AOC﹣S△BOC的值;(3)分三种情况:当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=﹣;故k的值为或2或﹣.【详解】(1)把C(m,4)代入一次函数y=﹣x+5,可得4=﹣m+5,解得m=2,∴C(2,4),设l2的解析式为y=ax,则4=2a,解得a=2,∴l2的解析式为y=2x;(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,y=﹣x+5,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∴S△AOC﹣S△BOC=×10×4﹣×5×2=20﹣5=15;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,∴当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=﹣;故k的值为或2或﹣.【点睛】本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.23、(1)详见解析;(2)40°【解析】
(1)先由HL判定Rt△BCE≌Rt△CDF,得到∠ABC=∠DCF,然后由对顶角相等可得:∠DCF=∠ACB,进而可得∠ABC=∠ACB,然后由等角对等边,可得AB=AC;(2)由CD=BC,可得∠CBD=∠CDB,然后由三角形的外角的性质可得:∠ACB=∠CBD+∠CDB=2∠CBD,由∠ABC=∠ACB,进而可得:∠ABC=2∠CBD,然后由∠ABD=∠ABC+∠CBD=3∠CBD=105,进而可求:∠CBD的度数及∠ABC的度数,然后由三角形的内角和定理即可求∠A的度数.【详解】解:(1)证明:∵,,∴.又∵,,∴,∴,又∵,∴,∴.(2)∵,∴.∵,∴.∵,∴,∵,∴,∴,∴.【点睛】此题考查了直角三角形全等的判定与性质,及等腰三角形判定与性质,解题的关键是:熟记三角形全等的判定与性质.24、(1),;(2)详见解析;(3)2【解析】
由根据路程等于速度乘以时间可得,,,则,根据,,可得:,根据相似三角形的判定可得:∽,再根据相似三角形的性质可得:,即,从而解得:,(2)根据,当时,可判定四边形PDBQ为平行四边形,根据平行四边形的性质可得:,解得:,(3)根据题意可得:,当时,点的坐标为,当时,点的坐标为,设直线的解析式为:,则,解得:,因此直线的解析式为:,再根据题意得:点P的坐标为,点Q的坐标为,因此在运动过程中PQ的中点M的坐标为,当时,,因此点M在直线上,作轴于N,则,,由勾股定理得,,因此线段PQ中点M所经过的路径长为.【详解】由题意得,,,则,,,,∽,,即,解得:,故答案为:,,存
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 书法题跋落款的制度
- 临床学科科务会制度
- 专项激励方案制度
- 2026年盐城市体育局直属事业单位公开招聘编外工作人员(体彩专管员)备考题库附答案详解
- 厦门市生态环境局补充非在编工作人员招聘备考题库(2026年1月)参考答案详解
- 2025-2030云服务项目可行性研究咨询报告
- 2025-2030信贷风险产业规划专项研究报告
- 2025至2030中国物联网终端设备市场增长与竞争格局研究报告
- 2025至2030中国区块链金融应用行业合规发展路径与投资价值判断研究报告
- 2026年永康市龙山镇人民政府工作人员招聘备考题库及一套答案详解
- 呆滞存货处理流程
- 安保员巡查记录表
- 中考数学常见几何模型简介
- 铁路工程施工组织设计指南-2009版(常用版)
- 新媒体数据分析与应用学习通课后章节答案期末考试题库2023年
- 老年人综合能力评估实施过程-评估工作文档及填写规范
- cobas-h-232心肌标志物床边检测仪操作培训
- 第六讲通量观测方法与原理
- 林规发防护林造林工程投资估算指标
- GB/T 23821-2022机械安全防止上下肢触及危险区的安全距离
- GB/T 5563-2013橡胶和塑料软管及软管组合件静液压试验方法
评论
0/150
提交评论