版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省亳州市2024届八年级下册数学期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123;④乙的速度比甲的速度快1米/秒,其中正确的编号是()A.①② B.②③ C.①②③ D.①②③④2.下列是最简二次根式的是A. B. C. D.3.如图,矩形ABCD的两条对角线相交于点O,CE垂直平分DO,,则BE等于A. B. C. D.24.现有甲、乙两个合唱队,队员的平均身高都是175cm,方差分别为,,那么两个队中队员的身高较整齐的是()A.甲队 B.乙队 C.两队一样高 D.不能确定5.我国古代用勾、股和弦分别表示直角三角形的两条直角边和斜边,如图由四个全等的直角三角形和一个小正方形拼成一个大正方形,数学家邹元治利用该图证明了勾股定理,现已知大正方形面积为9,小正方形面积为5,则每个直角三角形中勾与股的差的平方为()A.4 B.3 C.2 D.16.化简9的结果是()A.9 B.-3 C.±3 D.37.一个图形,无论是经过平移变换,还是经过旋转变换,下列说法都能正确的是()①对应线段平行;②对应线段相等;③图形的形状和大小都没有发生变化;④对应角相等A.①②③ B.①③④ C.①②④ D.②③④8.如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,若AC⊥BD则四边形EFGH为()A.平行四边形 B.菱形 C.矩形 D.正方形9.下列变形中,正确的是()A. B.C. D.10.已知:如图,在长方形ABCD中,AB=4,AD=1.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P的运动时间为秒,当的值为_____秒时,△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或711.如图,△ABC中,∠C=900,∠CAB=600,AD平分∠BAC,点D到AB的距离DE=3cm,则BC等于()A.3cm B.6cm C.9cm D.12cm12.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2 B.1 C.2 D.0二、填空题(每题4分,共24分)13.在等腰中,,,则底边上的高等于__________.14.如图,菱形ABCD的对角线长分别为a、b,以菱形ABCD各边的中点为顶点作矩形,然后再以矩形的中点为顶点作菱形,……,如此下去,得到四边形A2019B2019C2019D2019的面积用含a,b的代数式表示为___.15.计算的结果是_____.16.“今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.17.要使在实数范围内有意义,a应当满足的条件是_____.18.在矩形ABCD中,AB=4,AD=9点F是边BC上的一点,点E是AD上的一点,AE:ED=1:2,连接EF、DF,若EF=2,则CF的长为______________。三、解答题(共78分)19.(8分)学海书店购一批故事书进行销售,其进价为每本40元,如果按每本故事书50元进行出售,每月可以售出500本故事书,后来经过市场调查发现,若每本故事书涨价1元,则故事书的销量每月减少20本.(1)若学海书店要保证每月销售此种故事书盈利6000元,同时又要使购书者得到实惠,则每本故事书需涨价多少元;(2)若使该故事书的月销量不低于300本,则每本故事书的售价应不高于多少元?20.(8分)ABCD中,过点D作DE⊥AB于点E,点F在CD上,DF=BE,连接BF,AF.(1)求证:四边形BFDE是矩形;(2)若AF平分∠BAD,且AE=3,DF=5,求矩形BFDE的面积.21.(8分)如图,在平面直角坐标系中,直线与轴,轴的交点分别为,直线交轴于点,两条直线的交点为,点是线段上的一个动点,过点作轴,交轴于点,连接.求的面积;在线段上是否存在一点,使四边形为矩形,若存在,求出点坐标:若不存在,请说明理由;若四边形的面积为,设点的坐标为,求出关于的函数关系式,并写出自变量的取值范围.22.(10分)计算(1)计算:(2)23.(10分)某工厂新开发生产一种机器,每台机器成本y(万元)与生产数量x(台)之间满足一次函数关系(其中10≤x≤70,且为整数),函数y与自变量x的部分对应值如表x单位:台)102030y(单位:万元/台)605550(1)求y与x之间的函数关系式;(2)市场调查发现,这种机器每月销售量z(台)与售价a(万元/台)之间满足如图所示的函数关系.①该厂第一个月生产的这种机器40台都按同一售价全部售出,请求出该厂第一个月销售这种机器的总利润.(注:利润=售价﹣成本)②若该厂每月生产的这种机器当月全部售出,则每个月生产多少台这种机器才能使每台机器的利润最大?24.(10分)矩形纸片ABCD,AB=4,BC=12,E、F分别是AD、BC边上的点,ED=1.将矩形纸片沿EF折叠,使点C落在AD边上的点G处,点D落在点H处.(1)矩形纸片ABCD的面积为(2)如图1,连结EC,四边形CEGF是什么特殊四边形,为什么?(1)M,N是AB边上的两个动点,且不与点A,B重合,MN=1,求四边形EFMN周长的最小值.(计算结果保留根号)25.(12分)商场某种新商品每件进价是40元,在试销期间发现,当每件商品售价50元时,每天可销售500件,当每件商品售价高于50元时,每涨价1元,日销售量就减少10件.据此规律,请回答:(1)当每件商品售价定为55元时,每天可销售多少件商品?商场获得的日盈利是多少?(2)在上述条件不变,商品销售正常的情况下,每件商品的销售定价为多少元时,商场日盈利可达到8000元?26.如图,的直角边OB在x轴的正半轴上,反比例函数的图象经过斜边OA的中点D,与直角边AB相交于点C.①若点,求点C的坐标:②若,求k的值.
参考答案一、选择题(每题4分,共48分)1、D【解析】
易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙100s跑完总路程500可得乙的速度,进而求得100s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,再加上100即为c的值.【详解】解:甲的速度为:8÷2=4(米/秒);乙的速度为:500÷100=5(米/秒);b=5×100﹣4×(100+2)=92(米);5a﹣4×(a+2)=0,解得a=8,c=100+92÷4=123(秒),∴正确的有①②③④.故选D.【点睛】考查一次函数的应用;得到甲乙两人的速度是解决本题的突破点;得到相应行程的关系式是解决本题的关键.2、B【解析】
根据最简二次根式的定义即可判断.【详解】A.=2,故不是最简二次根式;B.是最简二次根式;C.根式含有分数,不是最简二次根式;D.有可以开方的m2,不是最简二次根式.故选B.【点睛】此题主要考查最简二次根式的判断,解题的关键是熟知最简二次根式的定义.3、A【解析】
根据矩形的性质可证明,都是等边三角形,根据等边三角形的性质即可求出OE的长,即可的答案;【详解】四边形ABCD是矩形,,垂直平分相等OD,,,,都是等边三角形,,OD=,,故选A.【点睛】本题考查矩形的性质、等边三角形的判断和性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4、B【解析】
根据方差的意义解答.方差,通俗点讲,就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小).在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.【详解】解:∵>,∴身高较整齐的球队是乙队.故选:B.【点睛】本题考查方差的意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.5、D【解析】
设勾为x,股为y,根据面积求出xy=2,根据勾股定理求出x2+y2=5,根据完全平方公式求出x﹣y即可.【详解】设勾为x,股为y(x<y),∵大正方形面积为9,小正方形面积为5,∴4×xy+5=9,∴xy=2,∵x2+y2=5,∴y﹣x====1,(x﹣y)2=1,故选:D.【点睛】本题考查了勾股定理和完全平方公式,能根据已知和勾股定理得出算式xy=2和x2+y2=5是解此题的关键.6、D【解析】
根据算术平方根的性质,可得答案.【详解】解:9=3,故D故选:D.【点睛】本题考查了算术平方根的计算,熟练掌握算术平方根的性质是解题关键.7、D【解析】
根据平移和旋转的性质对各小题分析判断,然后利用排除法求解.【详解】解:①平移后对应线段平行,旋转对应线段不一定平行,故本小题错误;②无论平移还是旋转,对应线段相等,故本小题正确;@无论平移还是旋转,图形的形状和大小都没有发生变化,故本小题正确;④无论平移还是旋转,对应角相等,故本小题正确.综上所述,说法正确的②③④.故选D.【点睛】本题主要考查了旋转的性质,平移的性质,熟记旋转变换,平移变换都只改变图形的位置不改变图形的形状与大小是解题的关键.8、C【解析】
先由三角形的中位线得到四边形EFGH是平行四边形,再证明EH⊥EF,由此证得四边形EFGH为矩形.【详解】如图,连接AC、BD,∵点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,∴HG∥AC,EF∥AC,且,EH∥BD,∴HG∥EF,HG=EF,∴四边形EFGH是平行四边形,∵AC⊥BD,∴EH⊥EF,∴四边形EFGH为矩形.故选:C.【点睛】此题考查平行四边形的判定,矩形的判定,这里的连线是关键,由连接对角线将四边形分为了三角形,再根据中点证得平行四边形,进而证得矩形.9、D【解析】
根据分式的基本性质:分式的分子、分母同时乘以或除以同一个非0的数或式子,分式的值不变.逐一进行判断。【详解】解:A.是最简分式,不能约分,故本选项错误;B.,故本选项错误;C.,故本选项错误;D.,故本选项正确。故选:D【点睛】本题主要考查了分式的性质,熟练掌握运算法则是解本题的关键.10、C【解析】
分两种情况进行讨论,根据题意得出BP=2t=2和AP=11-2t=2即可求得.【详解】解:因为AB=CD,若∠ABP=∠DCE=90°,BP=CE=2,根据SAS证得△ABP≌△DCE,
由题意得:BP=2t=2,
所以t=1,
因为AB=CD,若∠BAP=∠DCE=90°,AP=CE=2,根据SAS证得△BAP≌△DCE,
由题意得:AP=11-2t=2,
解得t=2.
所以,当t的值为1或2秒时.△ABP和△DCE全等.
故选C.【点睛】本题考查全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.11、C【解析】
根据直角三角形两锐角互余求出∠B=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据BC=BD+CD计算即可得解.【详解】解:∵∠C=90°,∠CAB=60°,
∴∠B=90°-60°=30°,
∵DE⊥AB,
∴BD=2DE=2×3=6cm,
∵AD平分∠BAC,∠C=90°,DE⊥B,
∴CD=DE=3cm,
∴BC=BD+CD=6+3=9cm.
故选:C.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形两锐角互余的性质以及直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质并准确识图是解题的关键.12、D【解析】分析:根据根与系数的关系可得出x1x2=1,此题得解.详解:∵一元二次方程x2﹣2x=1的两根分别为x1和x2,∴x1x2=1.故选D.点睛:本题考查了根与系数的关系,牢记两根之积等于是解题的关键.二、填空题(每题4分,共24分)13、【解析】
根据题意画出以下图形,然后根据等腰三角形性质得出BD=DC=1,进而利用勾股定理求出AD即可.【详解】如图所示,AB=AC=3,BC=2,AD为底边上的高,根据等腰三角形性质易得:BD=CD=1,∴在Rt△ADC中,=.故答案为:.【点睛】本题主要考查了等腰三角形性质以及勾股定理的运用,熟练掌握相关概念是解题关键.14、【解析】
根据三角形中位线定理,逐步得到小长方形的面积,得到规律即可求解.【详解】∵菱形ABCD的对角线长分别为a、b,AC⊥BD,∴S四边形ABCD=∵以菱形ABCD各边的中点为顶点作矩形,根据中位线的性质可知S四边形A1B1C1D1=S四边形ABCD=…则S四边形AnBnCnDn=S四边形ABCD=故四边形A2019B2019C2019D2019的面积用含a,b的代数式表示为.故填:.【点睛】此题主要考查特殊平行四边形的性质,解题的关键是根据题意找到规律进行求解.15、【解析】【分析】根据分式的加减法法则进行计算即可得答案.【详解】原式===,故答案为.【点睛】本题考查分式的加减运算,熟练掌握分式加减的运算法则是解题的关键,本题属于基础题.16、57.5【解析】
根据题意有△ABF∽△ADE,再根据相似三角形的性质可求出AD的长,进而得到答案.【详解】如图,AE与BC交于点F,由BC//ED得△ABF∽△ADE,∴AB:AD=BF:DE,即5:AD=0.4:5,解得:AD=62.5(尺),则BD=AD-AB=62.5-5=57.5(尺)故答案为57.5.【点睛】本题主要考查相似三角形的性质:两个三角形相似对应角相等,对应边的比相等.17、a⩽3.【解析】
根据二次根式有意义的条件列出关于a的不等式,求出a的取值范围即可.【详解】∵在实数范围内有意义,∴3−a⩾0,解得a⩽3.故答案为:a⩽3.【点睛】此题考查二次根式有意义的条件,解题关键在于掌握其有意义的条件.18、8或4【解析】
由题意先求出AE=3,ED=6,因为EF=2>AB,分情况讨论点F在点E的左侧和右侧的情况,根据勾股定理求出GE(EH)即可求解.【详解】解:∵AD=9,AE:ED=1:2,∴AE=3,ED=6,又∵EF=2>AB,分情况讨论:如下图:当点F在点E的左侧时,做FG垂直AD,则FCDG为矩形,AB=FG,CF=GD=ED+GE,在RT三角形GFE中,GE==2,则此时CF=6+2=8;如下图:当点F在点E的右侧时,做FH垂直AD,同理可得CF=ED-EH,HF=AB=4,EH=2,则此时CF=6-2=4;综上,CF的长为8或4.【点睛】本题考查矩形,直角三角形的性质,也考查勾股定理解三角形,注意分情况讨论.三、解答题(共78分)19、(1)每本故事书需涨5元;(2)每本故事书的售价应不高于60元.【解析】
(1)设每本故事书需涨价x元,按每本故事书50元进行出售,每月可以售出500本故事书,调查发现每涨1元,少卖20本,根据总利润=(售价-进价)×数量,列方程求解即可;(2)设每本故事书的售价为m元,根据在50元售价的基础上每涨1元,少卖20本,可得关于m的不等式,解不等式即可求得答案.【详解】(1)设每本故事书需涨价x元,由题意则有(x+50-40)(500-20x)=6000,解得:,,为了让购书者得到实惠,x=10应舍去,故x=5,答:每本故事书需涨5元;(2)设每本故事书的售价为m元,则500-20(m-50)≥300,解得:m≤60,答:每本故事书的售价应不高于60元.【点睛】本题考查了一元二次方程的应用,一元一次不等式的应用,弄清题意,找准等量关系,不等关系列出方程或不等式是解题的关键.20、(1)见解析;(2)1【解析】
(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)由平行线和角平分线定义得出∠DFA=∠DAF,证出AD=DF=5,由勾股定理求出DE==4,即可得出矩形BFDE的面积.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵AB∥CD,∴∠BAF=∠DFA,∵AF平分∠BAD,∴∠BAF=∠DAF,∴∠DFA=∠DAF,∴AD=DF=5,∵DE⊥AB,∴∠AED=90°,由勾股定理得:DE==4,∴矩形BFDE的面积=DF×DE=5×4=1.【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.21、(1)20;(2)存在;(3)S【解析】
(1)想办法求出A、D、C三点坐标即可解决问题;
(2)存在.根据OB=PE=2,利用待定系数法即可解决问题;
(3)利用梯形的面积公式计算即可.【详解】解:在中,令,得解得,点的坐标为在中,令得解得,点的坐标为解方程组,得,点的坐标为存在,四边形为矩形,对于,当时,,点的坐标为把代入,解得点的坐标是【点睛】本题考查一次函数综合题、二元一次方程组、矩形的判定和性质、梯形的面积公式等知识,解题的关键是熟练掌握待定系数法,学会利用方程组确定两个函数的交点坐标,属于中考常考题型.22、(1);(2)【解析】
(1)先根据算术平方根的代数意义,零指数幂的运算法则以及绝对值的意义进行化简,最后再进行加减运算;(2)先进行分母有理化运算和根据完全平方公式去括号,然后合并即可.【详解】(1)原式(2)原式【点睛】本题考查了二次根式的混合运算,同时还考查了绝对值和零指数幂.23、(1)y=-0.5x+65(10≤x≤70,且为整数);(2)①200万元;②10.【解析】
(1)根据函数图象和图象中的数据可以求得y与x的函数关系式;(2)①根据函数图象可以求得z与a的函数关系式,然后根据题意可知x=40,z=40,从而可以求得该厂第一个月销售这种机器的总利润;②根据题意可以得到每台的利润和台数之间的关系式,从而可以解答本题.【详解】解:(1)设y与x的函数关系式为y=kx+b,,得,即y与x的函数关系式为y=-0.5x+65(10≤x≤70,且为整数);(2)①设z与a之间的函数关系式为z=ma+n,,得,∴z与a之间的函数关系式为z=-a+90,当z=40时,40=-a+90,得a=50,当x=40时,y=-0.5×40+65=45,40×50-40×45=2000-1800=200(万元),答:该厂第一个月销售这种机器的总利润为200万元;②设每台机器的利润为w万元,W=(-x+90)-(-0.5x+65)=-x+25,∵10≤x≤70,且为整数,∴当x=10时,w取得最大值,答:每个月生产10台这种机器才能使每台机器的利润最大.故答案为(1)y=-0.5x+65(10≤x≤70,且为整数);(2)①200万元;②10.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.24、(1)2;(2)四边形CEGF是菱形,理由见详解;(1)四边形EFMN周长的最小值为.【解析】
(1)矩形面积=长×宽,即可得到答案,(2)利用对角线互相垂直平分的四边形是菱形进行证明,先证对角线相互垂直,再证对角线互相平分.(1)明确何时四边形的周长最小,利用对称、勾股定理、三角形相似,分别求出各条边长即可.【详解】解:(1)S矩形ABCD=AB•BC=12×4=2,故答案为:2.(2)四边形CEGF是菱形,证明:连接CG交EF于点O,由折叠得:EF⊥CG,GO=CO,∵ABCD是矩形,∴AD∥BC,∴∠OGE=∠OCF,∠GEO=∠CFO∴△GOE≌△COF(AAS),∴OE=OF∴四边形CEGF是菱形.因此,四边形CEGF是菱形.(1)作F点关于点B的对称点F1,则NF1=NF,当NF1∥EM时,四边形EFMN周长最小,设EC=x,由(2)得:GE=GF=FC=x,在Rt△CDE中,∵ED2+DC2=EC2,∴12+42=EC2,∴EC=5=GE=FC=GF,在Rt△GCD中,,∴OC=GO=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家长安全知识培训心得课件
- 家长安全会培训反思课件
- 2026年冷链提单质押合同
- 2026年无人机数据采集合同协议
- 2026年养殖技术服务合同
- 展销会合同2026年合同解除协议
- 2026年酒店住宿合同条款
- 2026年消防工程消防水源保障合同协议
- 2026年钢结构深化设计合同
- 2026年宠物营养师服务合同
- 商品混凝土实验室操作手册
- 资金调拨拆借管理制度
- 装饰装修工程监理月报
- 超星尔雅学习通《美的历程:美学导论(中国社会科学院)》2025章节测试附答案
- 教学课件-积极心理学(第2版)刘翔平
- 2019人教版高中物理必修第一册《第二章 匀变速直线运动的研究》大单元整体教学设计2020课标
- DGTJ 08-2176-2024 沥青路面预防养护技术标准(正式版含条文说明)
- DB33 802-2013 铝合金铸件可比单位综合能耗限额及计算方法
- 移植后免疫监测技术-洞察分析
- 《车用动力电池液冷板技术条件》
- 中国近代史纲要绍兴文理学院练习题复习资料
评论
0/150
提交评论