版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省松原市宁江区第四中学2024年八年级数学第二学期期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.62.矩形的对角线一定()A.互相垂直平分且相等 B.互相平分且相等C.互相垂直且相等 D.互相垂直平分3.的算术平方根是()A. B. C. D.4.反比例函数y=在第一象限的图象如图所示,则k的值可能是()A.1 B.2 C.3 D.45.给出下列几组数:①4,5,6;②8,15,16;③n2-1,2n,n2+1;④m2-n2,2mn,m2+n2(m>n>0).其中—定能组成直角三角形三边长的是().A.①②B.③④C.①③④D.④6.如图,在梯形ABCD中,AB∥CD,中位线EF与对角线AC、BD交于M、N两点,若EF=18cm,MN=8cm,则AB的长等于()cmA.10 B.13 C.20 D.267.在同一直角坐标系中,函数y=-kx+k与y=(k≠0)的图象大致是()A. B. C. D.8.一个多边形的每一个外角都等于,则这个多边形的边数等于()A.8 B.10 C.12 D.149.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A.1 B.1.3 C.1.2 D.1.510.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是(
)A.如果∠C﹣∠B=∠A,则△ABC是直角三角形B.如果c2=b2﹣a2,则△ABC是直角三角形,且∠C=90°C.如果(c+a)(c﹣a)=b2,则△ABC是直角三角形D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形11.下列运算错误的是A. B.C. D.12.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是黄金分割比(黄金分割比0.618)著名的“断臂维纳斯”便是如此.此外最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是黄金分割比.若某人满足上述两个黄金分割比例,且腿长为103cm,头顶至脖子下端的长度为25cm,则其身高可能是()A.165cm B.170cm C.175cm D.180cm二、填空题(每题4分,共24分)13.如图,小明作出了边长为2的第1个正△A1B1C1,算出了正△A1B1C1的面积.然后分别取△A1B1C1的三边中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积.用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积……,由此可得,第2个正△A2B2C2的面积是_______,第n个正△AnBnCn的面积是______14.实数64的立方根是4,64的平方根是________;15.某公司招聘员工一名,对甲、乙两位应试者进行了面试和笔试,他们的成绩(百分制)如下表所示:应试者面试笔试甲8690乙9283若公司将面试成绩、笔试成绩分别赋予6和4的权,则被录取的人是__________.16.已知函数,当=_______时,直线过原点;为_______数时,函数随的增大而增大.17.如图,一次函数与的图象相交于点,则关于的不等式的解集是________.18.如图,M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D,已知AB=10,BC=15,MN=3,则△ABC的周长是_______.三、解答题(共78分)19.(8分)如图,在Rt△ABC中,∠A=90°,∠B=30°,D、E分别是AB、BC的中点,若DE=3,求BC的长.20.(8分)如图,正方形OABC的面积为4,点O为坐标原点,点B在函数y(k<0,x<0)的图象上,点P(m,n)是函数y(k<0,x<0)的图象上异于B的任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F.(1)设矩形OEPF的面积为S1,求S1;(1)从矩形OEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为S1.写出S1与m的函数关系式,并标明m的取值范围.21.(8分)中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”,某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:(1)根据上图填写下表:平均数中位数众数甲班8.58.5乙班8.510(2)分别求甲乙两班的方差,并从稳定性上分析哪个班的成绩较好.22.(10分)学校通过初评决定最后从甲、乙、丙三个班中推荐一个班为县级先进班集体,下表是三个班的五项素质考评得分表。五项素质考评得分表(单位:分)班级行为规范学习成绩校运动会艺术获奖劳动卫生甲班10106107乙班108898丙班910969根据统计表中的信息回答下列问题:(1)请你补全五项成绩考评分析表中的数据:班级平均分众数中位数甲班8.610③乙班8.6②8丙班①99(2)参照上表中的数据,你推荐哪个班为县级先进班集体?并说明理由。(3)如果学校把行为规范、学习成绩、校运动会、艺术获奖、劳动卫生五项考评成绩按照3∶2∶1∶1∶3的比确定班级的综合成绩,学生处的李老师根据这个综合成绩,绘制了一幅不完整的条形统计图,请将这个统计图补充完整,按照这个成绩,应推荐哪个班为县级先进班集体?为什么?23.(10分)如图,在平面直角坐标系中,直线与双曲线交于第一、三象限内的、两点,与轴交于点,过点作轴,垂足为,,,点的纵坐标为1.(1)求反比例函数和一次函数的函数表达式;(2)连接,求四边形的面积;(3)在(1)的条件下,根据图像直接写出反比例函数的值小于一次函数的值时,自变量的取值范围.24.(10分)(1)操作思考:如图1,在平面直角坐标系中,等腰Rt△ACB的直角顶点C在原点,将其绕着点O旋转,若顶点A恰好落在点(1,2)处.则①OA的长为;②点B的坐标为(直接写结果);(2)感悟应用:如图2,在平面直角坐标系中,将等腰Rt△ACB如图放置,直角顶点C(-1,0),点A(0,4),试求直线AB的函数表达式;(3)拓展研究:如图3,在平面直角坐标系中,点B(4;3),过点B作BAy轴,垂足为点A;作BCx轴,垂足为点C,P是线段BC上的一个动点,点Q是直线上一动点.问是否存在以点P为直角顶点的等腰Rt△APQ,若存在,请求出此时P的坐标,若不存在,请说明理由.25.(12分)某商场统计了每个营业员在某月的销售额,绘制了如下的条形统计图以及不完整的扇形统计图:解答下列问题:(1)设营业员的月销售额为x(单位:万元),商场规定:当x<15时为不称职,当15≤x<20时,为基本称职,当20≤x<25为称职,当x≥25时为优秀.则扇形统计图中的a=_____,b=_____.(2)所有营业员月销售额的中位数和众数分别是多少?(3)为了调动营业员的积极性,决定制定一个月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得营业员的半数左右能获奖,奖励标准应定为多少万元?并简述其理由.26.如图,在Rt△ABC中,∠C=90°,以点B为圆心,以适当的长为半径画弧,与∠ABC的两边相交于点E、F,分别以点E和点F为圆心,以大于EF的长为半径画弧,两弧相交于点M,作射线BM交AC于点D;若∠ABC=2∠A,证明:AD=2CD.
参考答案一、选择题(每题4分,共48分)1、A【解析】试题分析:∵多边形的外角和是360度,多边形的内角和等于它的外角和,则内角和是360度,∴这个多边形是四边形.故选B.考点:多边形内角与外角.2、B【解析】
根据矩形的性质对矩形的对角线进行判断即可.【详解】解:矩形的对角线一定互相平分且相等,故选:B.【点睛】此题考查矩形的性质,关键是根据矩形的对角线一定互相平分且相等解答.3、B【解析】
根据算术平方根的概念求解即可.【详解】解:4的算术平方根是2,故选B.【点睛】本题考查了算术平方根的概念,属于基础题型,熟练掌握算术平方根的定义是解题的关键.4、C【解析】如图,当x=2时,y=,∵1<y<2,∴1<<2,解得2<k<4,所以k=1.故选C.5、D【解析】①42+52≠62,∴不能组成直角三角形;②82+152≠162,∴不能组成直角三角形;③当n=1时,三边长为:0、2、2,不能组成直角三角形;④(m2-n2)2+(2mn)2=(m2+n2)2,且m>n>0,∴能组成直角三角形.故选D.点睛:本题关键在于勾股定理逆定理的运用.6、D【解析】分析:首先根据梯形中位线的性质得出AB+CD=36cm,根据MN的长度以及三角形中位线的性质得出EM=FN=5cm,从而得出CD=10cm,然后得出答案.详解:∵EF=,∴AB+CD=36cm,∵MN=8cm,EF=18cm,∴EM+FN=10cm,∴EM=FN=5cm,根据三角形中位线的性质可得:CD=2EM=10cm,∴AB=36-10=26cm,故选D.点睛:本题主要考查的是梯形中位线以及三角形中位线的性质,属于基础题型.明确中位线的性质是解决这个问题的关键.7、C【解析】当k>0时,函数y=-kx+k的图象分布在第一、二、四象限,函数y=的图象位于第一、三象限。故本题正确答案为C.8、B【解析】
多边形的外角和是固定的360°,依此可以求出多边形的边数.【详解】∵一个多边形的每一个外角都等于36°,∴多边形的边数为360°÷36°=1.故选B.【点睛】本题主要考查了多边形的外角和定理:多边形的外角和是360°,已知多边形的外角求多边形的边数是一个考试中经常出现的问题.9、C【解析】
首先证明四边形AEPF为矩形,可得AM=AP,最后利用垂线段最短确定AP的位置,利用面积相等求出AP的长,即可得AM.【详解】在△ABC中,因为AB2+AC2=BC2,所以△ABC为直角三角形,∠A=90°,又因为PE⊥AB,PF⊥AC,故四边形AEPF为矩形,因为M
为
EF
中点,所以M
也是
AP中点,即AM=AP,故当AP⊥BC时,AP有最小值,此时AM最小,由,可得AP=,AM=AP=故本题正确答案为C.【点睛】本题考查了矩形的判定和性质,确定出AP⊥BC时AM最小是解题关键.10、B【解析】
直角三角形的判定方法有:①求得一个角为90°,②利用勾股定理的逆定理.【详解】解:A、∵∠C+∠B+∠A=180°(三角形内角和定理),∠C﹣∠B=∠A,∴∠C+∠B+(∠C﹣∠B)=180°,∴2∠C=180°,∴∠C=90°,故该选项正确,
B、如果c2=b2﹣a2,则△ABC是直角三角形,且∠B=90°,故该选项错误,
C、化简后有c2=a2+b2,则△ABC是直角三角形,故该选项正确,
D、设三角分别为5x,3x,2x,根据三角形内角和定理可得,5x+3x+2x=180°,则x=18°,所以这三个角分别为:90度,36度,54度,则△ABC是直角三角形,故该选项正确.
故选B.【点睛】考查了命题与定理的知识,解题的关键是了解直角三角形的判定方法.11、A【解析】
根据二次根式的加减法、乘法、除法逐项进行计算即可得.【详解】A.与不是同类二次根式,不能合并,故错误,符合题意;B.,正确,不符合题意;C.=,正确,不符合题意;D.,正确,不符合题意.故选A.【点睛】本题考查了二次根式的运算,熟练掌握二次根式的乘除法、加减法的运算法则是解题的关键.12、B【解析】
以腿长103cm视为从肚脐至足底的高度,求出身高下限;)以头顶到脖子下端长度25cm视为头顶至咽喉长度求出身高上限,由此确定身高的范围即可得到答案.【详解】(1)以腿长103cm视为从肚脐至足底的高度,求出身高下限:,(2)以头顶到脖子下端长度25cm视为头顶至咽喉长度求出身高上限:①咽喉至肚脐:cm,②肚脐至足底:cm,∴身高上限为:25+40+105=170cm,∴身高范围为:,故选:B.【点睛】此题考查黄金分割,正确理解各段之间的比例关系,确定身高的上下限,即可得到答案.二、填空题(每题4分,共24分)13、【解析】
根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△AnBnCn的面积是.【详解】正△A1B1C1的面积是×22==,∵△A2B2C2与△A1B1C1相似,并且相似比是1:2,∴面积的比是1:4,则正△A2B2C2的面积是×==;∵正△A3B3C3与正△A2B2C2的面积的比也是1:4,∴面积是×==;依此类推△AnBnCn与△An﹣1Bn﹣1Cn﹣1的面积的比是1:4,第n个三角形的面积是.故答案是:,.【点睛】考查了相似三角形的判定与性质,以及等边三角形的性质,找出题中的规律是解题的关键.14、【解析】
根据平方根的定义求解即可.【详解】.故答案为:.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作.15、乙.【解析】
根据加权平均数的计算公式进行计算即可.【详解】∵甲的面试成绩为86分,笔试成绩为90分,面试成绩和笔试成绩6和4的权,∴甲的平均成绩的是(分).∵乙的面试成绩为92分,笔试成绩为83分,面试成绩和笔试成绩6和4的权,∴乙的平均成绩的是(分).∵∴被录取的人是乙故答案为:乙.【点睛】此题考查了加权平均数的计算公式,解题的关键是计算平均数时按6和4的权进行计算.16、m>0【解析】分析:(1)根据正比例函数的性质可得出m的值;(2)根据一次函数的性质列出关于m的不等式,求出m的取值范围即可.详解:直线过原点,则;即,解得:;函数随的增大而增大,说明,即,解得:;故分别应填:;m>0.点睛:本题考查的是一次函数的图象与系数的关系,熟知一次函数的定义及增减性是解答此题的关键.17、【解析】
根据图像即可得出答案.【详解】∵即的函数图像在的下方∴x>-2故答案为x>-2【点睛】本题考查的是一次函数,难度适中,需要熟练掌握一次函数的图像与性质.18、41【解析】
证明△ABN≌△ADN,求得AD=AB=10,BN=DN,继而可和CD长,结合M为BC的中点判断MN是△BDC的中位线,从而得出CD长,再根据三角形周长公式进行计算即可得.【详解】在△ABN和△ADN中,,∴△ABN≌△ADN,∴BN=DN,AD=AB=10,又∵点M是BC中点,∴MN是△BDC的中位线,∴CD=2MN=6,故△ABC的周长=AB+BC+CD+AD=10+15+6+10=41,故答案为:41.【点睛】本题考查了全等三角形的判定与性质,三角形的中位线定理,等腰三角形的判定等,注意培养自己的敏感性,一般出现高、角平分线重合的情况,都需要找到等腰三角形.三、解答题(共78分)19、12.【解析】
根据三角形中位线定理得AC=2DE=6,再根据30°的角所对的直角边等于斜边的一半求出BC的长即可.【详解】∵D、E是AB、BC的中点,DE=3∴AC=2DE=6∵∠A=90°,∠B=30°∴BC=2AC=12.【点睛】此题主要考查了三角形中位线定理以及30°的角所对的直角边等于斜边的一半,熟练掌握定理是解题的关键.20、(1);(1).【解析】
(1)根据正方形的面积求出点B的坐标,进而可求出函数解析式,由点P在函数图象上即可求出结果;(1)由于点P与点B的位置关系不能确定,故分两种情况进行讨论计算即可.【详解】解:(1)∵正方形的面积为4,∴,∴,把代入中,,∴,∴解析式为,∵在的图象上,∴,即,∴;(1)①当在点上方时,;②当在点下方时,,综上,.【点睛】本题考查了反比例函数与几何的综合,难度不大,要注意当点的位置不确定时,需观察图形判断是否进行分类讨论.21、(1)甲众数:8.5,乙中位数:8;(2)甲班的成绩较好.【解析】试题分析:(1)根据众数的概念找出出现次数最多的数据,根据中位数的求解方法进行求解,即可解答;(2)先求出甲、乙的方差,再比较即可.试题解析:(1)根据图示可知甲班8.5出现次数最多,甲班的众数是8.5;乙班数据从小到大排列为:7,7.5,8,10,10,所以中位数是8,故答案为8.5,8,填表如下:平均数中位数众数甲班8.58.58.5乙班8.5810(2)甲的方差为:×[(8.5﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2+(8.5﹣8.5)2+(10﹣8.5)2]=0.7,乙的方差为:×[(7﹣8.5)2+(10﹣8.5)2+(10﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2]=1.6,因为0.7<1.6所以甲班的方差小,成绩稳定,甲班的成绩较好.22、(1)8.6,8,10;(2)甲班:三个班的平均数相同,甲班众数与中位数高于乙和丙;(3)画图见解析,丙班.【解析】
(1)根据平均数是所有数据的和除以数据的个数,众数是出现次数最多的数据,中位数是一组数据按从小到大或从大到小的顺序排列中间的数(或中间两个数的平均数),可得答案;(2)根据平均数、众数、中位数的大小比较,可得答案;(3)根据加权平均数的大小比较,可得答案.【详解】(1)①=(9+10+9+6+9)=8.6,②观察五项素质考评得分表可知乙班的众数是8,③观察五项素质考评得分表可知甲班的中位数是10;(2)甲班,理由为:三个班的平均数相同,甲班的众数与中位数都高于乙班与丙班;(3)根据题意,得:丙班的平均数为9×+10×+9×+6×+9×=8.9补全条形统计图,如图所示∵8.5<8.7<8.9,∴依照这个成绩,应推荐丙班为市级先进班集体.【点睛】本题考查了统计表、众数、加权平均数、中位数和条形统计图,学生们需要认真分析即可得到答案.23、(1)反比例函数解析式为;一次函数解析式为;(2)1;(3)或.【解析】
(1)根据BM⊥轴,可知△BMO为等腰直角三角形,可求得点B的坐标,将其代入反比例函数,求出,即可知反比例函数解析式,已知点A的纵坐标,代入求得的反比例函数解析式,可求得点A的横坐标,再利用待定系数法,即可求得一次函数解析式;(2)一次函数与y轴交于点C,可求得C的坐标,易证四边形MBOC是平行四边形,OM即为高,四边形的面积即可求解;(3)要使反比例函数的值小于一次函数的值,反比例函数图像一定在一次函数图像的下方,观察图像,即可求解自变量的取值范围.【详解】解:(1)∵BM⊥轴,且BM=OM,∴△BMO为等腰直角三角形,∵OB=,∴BM=OM=2,∴点B的坐标为(-2,-2),∵点B在双曲线上,代入,可求得,故反比例函数的解析式为,∵点A也是反比例函数上的点,且A点的纵坐标为1,代入,求得A点坐标为(1,1),∵点A、B也是直线上的点,∴,解得.故一次函数的解析式为.(2)∵一次函数与轴交于点C,将代入解析式,可求得C点的坐标为(0,2)∴BM=OC,又∵BM//OC,∴四边形MBOC是平行四边形,OM即为平行四边形MBOC的高,∴四边形MBOC的面积,故四边形MBOC的面积为1.(3)根据图像观察可知,要使反比例函数的值小于一次函数的值时,反比例函数图像一定在一次函数图像的下方,包括A(1,1)的右侧,以及B(-2,-2)到轴这两部分,从而可知,自变量的取值范围是:或.故答案为:或.【点睛】本题目考查函数的综合,难度一般,涉及知识点有反比例函数、一次函数,待定系数法等,熟练掌握两种函数的性质是顺利解题的关键.24、(1),(2)(3),【解析】
由可得,,,,易证≌,,,因此;同可证≌,,,,求得最后代入求出一次函数解析式即可;分两种情况讨论当点Q在x轴下方时,当点Q在x轴上方时根据等腰构建一线三直角,从而求解.【详解】如图1,作轴,轴.,,,,≌,,,.故答案为,;如图2,过点B作轴.,≌,,,.设直线AB的表达式为将和代入,得,解得,直线AB的函数表达式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心血管疾病精准风险分层与护理干预
- 心血管疾病一级预防的精准营养干预策略
- 心脏移植供体分配的医疗资源均衡配置
- 心脏瓣膜器械个性化治疗策略
- 心脏康复中的药物安全边界
- 心肌病心肌代谢评估的多组学整合分析策略
- 心理学技术在慢性病行为干预中的应用
- 微生物组与肠脑轴疾病的干预策略
- 微创缝合技术对硬脑膜修补患者生活质量的影响
- 微创手术治疗脊髓血管畸形技术优化
- 智能工厂项目培训
- 《组织传播学》教材
- GB 46520-2025建筑用绝热材料及制品燃烧性能安全技术规范
- 竖井通风管道施工技术方案
- 2025年低空经济行业碳排放核算方法与案例分析报告
- 乡土中国血缘和地缘
- 一流专业验收汇报
- 水利工程维护保养手册
- 城市更新项目申报2025年申报指南与方案
- 绿化工程分包合同协议书3篇
- 企业安全管理事故后复工影响评估与风险防控
评论
0/150
提交评论