版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省无锡市名校2024届数学八年级下册期末考试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.某居民小区10户家庭5月份的用水情况统计结果如表所示:这10户家庭的月平均用水量是(
)月用水量/m345689户数23311A.2m3
B.3.2m3
C.5.8m3
D.6.4m32.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A. B. C. D.3.在Rt△ABC中,∠C=90°,AB=13,AC=12,则sinB的值是()A. B. C. D.4.如图,在长方形中,绕点旋转,得到,使,,三点在同一条直线上,连接,则是()A.等腰三角形 B.直角三角形 C.等边三角形 D.等腰直角三角形5.如图,在6×4的方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.格点N C.格点P D.格点Q6.下列多项式中,不能运用公式法进行因式分解的是()A.x2+2xy+y2 B.x2﹣9 C.m2﹣n2 D.a2+b27.已知一次函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b>1的解集为(
)A.x<0 B.x>0 C.x<2 D.x>28.下列计算结果,正确的是()A. B. C. D.9.顺次连接矩形四边中点所得的四边形一定是()A.正方形 B.矩形 C.菱形 D.等腰梯形10.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数 B.方差 C.众数 D.中位数二、填空题(每小题3分,共24分)11.计算:=________.12.如图,,是反比例函数图像上的两点,过点作轴,过点作轴,交点为,连接,.若的面积为2,则的面积为______.13.若□ABCD中,∠A=50°,则∠C=_______°.14.若分式的值为0,则x=_________________.15.在菱形中,在菱形所在平面内,以对角线为底边作顶角是的等腰则_________________.16.如图,两张等宽的纸条交叉叠放在一起,在重叠部分构成的四边形ABCD中,若AB=10,AC=12,则BD的长为_____.17.如图,菱形ABCD的面积为24cm2,正方形ABCF的面积为18cm2,则菱形的边长为_____.18.如图,菱形ABCD的周长为16,∠ABC=120°,则AC的长为_______________.三、解答题(共66分)19.(10分)某中学在一次爱心捐款活动中,全体同学积极踊跃捐款.现抽查了九年级(1)班全班同学捐款情况,并绘制出如下的统计表和统计图:捐款(元)2050100150200人数(人)412932求:(Ⅰ)m=_____,n=_____;(Ⅱ)求学生捐款数目的众数、中位数和平均数;(Ⅲ)若该校有学生2500人,估计该校学生共捐款多少元?20.(6分)已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数于点(2,a),求:(1)a的值;(2)k,b的值;(3)这两个函数图象与x轴所围成的三角形的面积.21.(6分)如图,已知点A(﹣2,0),点B(6,0),点C在第一象限内,且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD于点E,交OC于点E(1)求直线BD的解析式;(2)求线段OF的长;(3)求证:BF=OE.22.(8分)数形结合是一种重要的数学思想,我们不但可以用数来解决图形问题,同样也可以用借助图形来解决数量问题,往往能出奇制胜,数轴和勾股定理是数形结合的典范.数轴上的两点A和B所表示的数分别是和,则A,B两点之间的距离;坐标平面内两点,,它们之间的距离.如点,,则.表示点与点之间的距离,表示点与点和的距离之和.(1)已知点,,________;(2)表示点和点之间的距离;(3)请借助图形,求的最小值.23.(8分)如图1,在正方形ABCD中,E是BC边上一点,F是BA延长线上一点,AF=CE,连接BD,EF,FG平分∠BFE交BD于点G.(1)求证:△ADF≌△CDE;(2)求证:DF=DG;(3)如图2,若GH⊥EF于点H,且EH=FH,设正方形ABCD的边长为x,GH=y,求y与x之间的关系式.24.(8分)如图,平行四边形ABCD的对角线AC,BD相交于点O,AB=5,BC=1.(1)求OD长的取值范围;(2)若∠CBD=30°,求OD的长.25.(10分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)26.(10分)(1)如图1,平行四边形纸片ABCD中,AD=5,S甲行四边形纸片ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为A.平行四边形B.菱形C.矩形D.正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.求证:四边形AFF′D是菱形.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
把已知数据代入平均数公式求平均数即可.【详解】月平均用水量=故答案为:C.【点睛】此题主要考查加权平均数的求解,解题的关键是熟知加权平均数的定义与公式.2、B【解析】
根据矩形的性质,得△EBO≌△FDO,再由△AOB与△ABC同底且△AOB的高是△ABC高的得出结论.【详解】解:∵四边形为矩形,∴OB=OD=OA=OC,在△EBO与△FDO中,∵∠EOB=∠DOF,OB=OD,∠EBO=∠FDO,∴△EBO≌△FDO(ASA),∴阴影部分的面积=S△AEO+S△EBO=S△AOB,∵△AOB与△ABC同底且△AOB的高是△ABC高的,∴S△AOB=S△ABC=S矩形ABCD.故选B.【点睛】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质3、B【解析】
根据题意,直接运用三角函数的定义求解.【详解】解:∵∠C=90°,AB=13,AC=12,∴sinB=.故选:B.【点睛】本题主要考查的是锐角三角函数的定义,解答此类题目的关键是画出图形便可直观解答.4、D【解析】
证明∠GAE=90°,∠EAB=90°,根据旋转的性质证得AF=AC,∠FAE=∠CAB,得到∠FAC=∠EAB=90°,即可解决问题.【详解】解:∵四边形AGFE为矩形,
∴∠GAE=90°,∠EAB=90°;
由题意,△AEF绕点A旋转得到△ABC,
∴AF=AC;∠FAE=∠CAB,
∴∠FAC=∠EAB=90°,
∴△ACF是等腰直角三角形.
故选:D.【点睛】本题主要考查了旋转的性质和等腰三角形的定义,解题的关键是灵活运用旋转的性质来分析、判断、解答.5、B【解析】
此题可根据旋转前后对应点到旋转中心的距离相等来判断所求的旋转中心.【详解】解:如图,连接N和两个三角形的对应点;发现两个三角形的对应点到点N的距离相等,因此格点N就是所求的旋转中心;故选B.【点睛】熟练掌握旋转的性质是确定旋转中心的关键所在.6、D【解析】
各项分解因式,即可作出判断.【详解】A、原式=(x+y)2,不符合题意;B、原式=(x+3)(x-3),不符合题意;C、原式=(m+n)(m-n),不符合题意;D、原式不能分解因式,符合题意,故选D.【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.7、A【解析】
根据图形得出k<0和直线与y轴交点的坐标为(0,1),即可得出不等式的解集.【详解】∵从图象可知:k<0,直线与y轴交点的坐标为(0,1),
∴不等式kx+b>1的解集是x<0,
故选A.【点睛】考查了一次函数与一元一次不等式,能根据图形读出正确信息是解此题的关键.8、C【解析】
按照二次根式的运算法则对各项分别进行计算,求得结果后进行判断即可.【详解】A.与不是同类二次根式,不能合并,故此选项错误;B.,故此选项错误;C.,正确;D.不能化简了,故此选项错误.故选:C.【点睛】此题需要注意的是:二次根式的加减运算实质是合并同类二次根式的过程,不是同类二次根式的不能合并.9、C【解析】矩形的性质,三角形中位线定理,菱形的判定.【分析】如图,连接AC.BD,在△ABD中,∵AH=HD,AE=EB,∴EH=BD.同理FG=BD,HG=AC,EF=AC.又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE.∴四边形EFGH为菱形.故选C.10、B【解析】
平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.二、填空题(每小题3分,共24分)11、7【解析】
根据平方差公式展开,再开出即可;【详解】===7.故答案为7.【点睛】本题考查了二次根式的化简,主要考查学生的计算和化简能力,题目比较好,难度适中.12、1【解析】
设A(m,),B(n,),根据题意可得AP=,且A点到y轴的距离为m,依据已知△AOP的面积为2,得到m和n的关系式n=3m,计算△ABP面积=AP×BP,即可得到结果.【详解】解:设A(m,),B(n,),根据题意可得AP=,且A点到y轴的距离为m,则AP×m=()×m=2,整理得,所以n=3m,B点坐标可以表示为(3m,)△ABP面积=AP×BP=()×(3m−m)=1.故答案为1.【点睛】本题主要考查了反比例函数图象上点的坐标特征,解决此类型问题,一般设某个点坐标为(x,),然后用横纵坐标的绝对值表示线段的长度.13、50【解析】因为平行四边形的对角相等,所以∠C=50°,故答案为:50°.14、2【解析】
根据分式值为0的条件进行求解即可.【详解】由题意,得x-2=0,解得:x=2,故答案为:2.【点睛】本题考查了分式值为0的条件,熟练掌握“分式值为0时,分子为0用分母不为0”是解题的关键.15、105°或45°【解析】
根据菱形的性质求出∠ABD=∠DBC=75°利用等腰三角形的性质求出∠EBD=∠EDB=30°,再分点E在BD右侧时,点E在BD左侧时,分别求出答案即可.【详解】∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠C=∠ABC=∠ADC=150°,∴∠ABD=∠DBC=75°,∵EB=ED,∠DEB=120°,∴∠EBD=∠EDB=30°,当点E在DB左侧时,∠EBC=∠EBD+∠CBD=105°,当点在DB右侧时,∠BC=∠CBD-∠BD=45°,故答案为:105°或45°.【点睛】此题考查菱形的性质,等腰三角形的性质,正确理解题意分情况求解是解题的关键.16、1【解析】
过点作于,于,设、交点为,首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的面积可得邻边相等,则重叠部分为菱形.然后依据勾股定理求得的长,从而可得到的长.【详解】解:过点作于,于,设、交点为.两条纸条宽度相同,.,,四边形是平行四边形..又.,四边形是菱形;,,...故答案为1.【点睛】本题考查了菱形的判定与性质、平行四边形的判定与性质、勾股定理以及四边形的面积,证得四边形为菱形是解题的关键.17、5cm【解析】
根据正方形的面积可用对角线进行计算解答即可.【详解】解:因为正方形AECF的面积为18cm2,所以AC==6cm,因为菱形ABCD的面积为24cm2,所以BD==8cm,所以菱形的边长==5cm.故答案为:5cm.【点睛】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.18、【解析】
设AC与BD交于点E,则∠ABE=60°,根据菱形的周长求出AB的长度,在RT△ABE中,求出AE,继而可得出AC的长.【详解】解:在菱形ABCD中,∠ABC=120°,
∴∠ABE=60°,AC⊥BD,
∵菱形ABCD的周长为16,
∴AB=4,
在RT△ABE中,AE=ABsin∠ABE=,
故可得AC=2AE=.故答案为.【点睛】此题考查了菱形的性质,属于基础题,解答本题的关键是掌握菱形的基本性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.三、解答题(共66分)19、4030【解析】分析:(Ⅰ)把表格中的数据相加得出本次接受随机抽样调查的学生人数;利用50元,100元的捐款人数求得占总数的百分比得出的数值即可;
(Ⅱ)利用众数、中位数和平均数的意义和求法分别得出答案即可;
(Ⅲ)利用求得的平均数乘总人数得出答案即可.详解:(Ⅰ)本次接受随机抽样调查的学生人数为4+12+9+3+2=30人.12÷30=40%,9÷30=30%,所以扇形统计图中的故答案为40,30;(Ⅱ)∵在这组数据中,50出现了12次,出现的次数最多,∴学生捐款数目的众数是50元;∵按照从小到大排列,处于中间位置的两个数据都是50,∴中位数为50元;这组数据的平均数=(20×4+50×12+100×9+150×3+200×2)÷30=2430÷30=81(元).(Ⅲ)根据题意得:2500×81=202500元答:估计该校学生共捐款202500元.点睛:本题考查扇形统计图,用样本估计总体,加权平均数,中位数,众数等,熟练掌握各个概念是解题的关键.20、(1)a=1;(2)k=2,b=-3;(3).【解析】
(1)由题知,点(2,a)在正比例函数图象上,代入即可求得a的值;(2)把点(-1,-5)及点(2,a)代入一次函数解析式,再根据(1)即可求得k,b的值;(3)由于正比例函数过原点,又有两个函数交点,求面积只需知道一次函数与x轴的交点即可.【详解】(1)由题知,把(2,a)代入y=x,解得a=1;(2)由题意知,把点(-1,-5)及点(2,a)代入一次函数解析式,得:,又由(1)知a=1,解方程组得到:k=2,b=-3;(3)由(2)知一次函数解析式为:y=2x-3,y=2x-3与x轴交点坐标为(,0)∴所求三角形面积S=×1×=.【点睛】本题考查了一次函数图象上点的坐标的性质以及正比例函数图象上点的坐标的性质,是基础题型.21、(1);(1)OF=1;(3)见解析.【解析】
(1)在Rt△ABD中,通过解直角三角形可求出OD的长,进而可得出点D的坐标,再根据点B,D的坐标,利用待定系数法可求出直线BD的解析式;(1)由等边三角形的性质结合三角形内角和定理,可得出∠BAE=∠CFE=30°,进而可得出∠OAF=∠OFA=30°,再利用等角对等边可得出线段OF的长;(3)通过解含30度角的直角三角形可求出BE的长,结合BC的长可得出CE=OF=1,由OB=CO,∠BOF=∠OCE及OF=CE可证出△OBF≌△COE(SAS),再利用全等三角形的性质可得出BF=OE.【详解】(1)∵△OBC为等边三角形,∴∠ABC=60°.在Rt△ABD中,tan∠ABD=,即,∴AD=,∴点D的坐标是(0,).设BD的解析式是y=kx+b(k≠0),将B(6,0),D(0,)代入y=kx+b,得:,解得:,∴直线BD的解析式为.(1)解:∵AE⊥BC,△OBC是正三角形,∴∠BAE=∠CFE=30°,∴∠OAF=∠OFA=30°,∴OF=OA=1,即OF的长为1.(3)证明:∵AB=8,∠OBC=60°,AE⊥BC,∴BE=AB=4,∴CE=BC-BE=6-4=1,∴OF=CE.在△OBF和△COE中,,∴△OBF≌△COE(SAS),∴BF=OE.【点睛】本题考查了等边三角形、解直角三角形、待定系数法求一次函数解析式、等腰三角形的性质、三角形内角和定理以及全等三角形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数的解析式;(1)通过角的计算,找出∠OAF=∠OFA;(3)利用全等三角形的判定定理SAS,证出△OBF≌△COE.22、(1);(2),,;(3)最小值是.【解析】
(1)根据两点之间的距离公式即可得到答案;(2)根据表示点与点之间的距离,可以得到A、B两点的坐标;(3)根据两点之间的距离公式,再结合图形,通过化简可以得到答案;【详解】解:(1)根据两点之间的距离公式得:,故答案为:.(2)根据表示点与点之间的距离,∴表示点和点之间的距离,∴故答案为:b,-6,1.(3)解:如图1,表示的长,根据两点之间线段最短知如图2,∴的最小值是.【点睛】本题考查了坐标平面内两点之间的距离公式,以及平面内两点之间的最短距离,解题的关键是注意审题,会用数形结合的解题方法.23、(1)详见解析;(2)详见解析;(3),理由详见解析.【解析】
(1)根据SAS即可证明;
(2)欲证明DF=DG,只要证明∠DFG=∠DGF;
(3)如图2中,作GM⊥AB于M,GN⊥BC于N.连接EG.首先说明G是△BEF的内心,由题意Rt△FGH≌Rt△FGM,Rt△EGH≌Rt△EGN,四边形GMBN是正方形,推出FH=FM,EH=EN,GN=GM=BM=BN=y,由EH:FH=1:3,设EH=a,则FH=3a,FB=3a+y,BE=a+y,EC=AF,推出FB+BE=2x,可得3a+y+a+y=2x,即y=x-2a,推出CN=2a,推出CE=a,想办法用a表示x、y即可解决问题;【详解】(1)证明:如图1中,∵四边形ABCD是正方形,∴∠C=∠BAD=∠DAF=90°,CD=DA,在△ADF和△CDE中,∴△ADF≌△CDE.(2)证明:如图1中,∵四边形ABCD是正方形,∴∠FBG=45°,∵△ADF≌△CDE,∴DF=DE,∠ADF=∠CDE,∴∠EDF=∠ADC=90°,∠DFE=45°,∵∠DFG=45°+∠EFG,∠DGF=45°+∠GFB,∵∠EFG=∠BFG,∴∠DFG=∠DGF,∴DF=DG.(3)结论:理由:如图2中,作GM⊥AB于M,GN⊥BC于N.连接EG.∵GF平分∠BAE,DB平分∠EBF,∴G是△BEF的内心,∵GH⊥EF,∴GH=GN=GM=y,∵FG=FG,EG=EG,∴Rt△FGH≌Rt△FGM,Rt△EGH≌Rt△EGN,四边形GMBN是正方形,∴FH=FM,EH=EN,GN=GM=BM=BN=y,∵EH:FH=1:3,设EH=a,则FH=3a,∵FB=3a+y,BE=a+y,∵EC=AF,∴FB+BE=2x,∴3a+y+a+y=2x,∴y=x﹣2a,∴CN=2a,∵EN=EH=a,∴CE=a,在Rt△DEF中,DE=2a,在Rt△DCE中,∴∴【点睛】本题考查四边形综合题、正方形的性质、全等三角形的判定和性质、等腰三角形的判定、勾股定理等知识,解题的关键是准确寻找全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.24、(1);(2).【解析】
(1)根据三角形三边关系即可求解;(2)过点D作DE⊥BC交BC延长线于点E,构建直角三角形,利用勾股定理解题即可.【详解】解:(1)∵四边形ABCD是平行四边形,AB=5,BC=1,∴AB=CD=5,BC=AD=1,OD=BD,∴在△ABD中,,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年BIM技术在地铁建设中的应用实例
- 贺银成课件笔记
- 2026春招:文员笔试题及答案
- 货运安全培训班讲话
- D打印技术在医疗领域应用前景分析
- 临床药事管理改进方案
- 货物搬运安全知识培训课件
- 医院医疗纠纷处理流程汇报
- 2026年蚌埠学院单招综合素质笔试参考题库带答案解析
- 医疗信息录入员的职业礼仪
- 医用超声探头复用处理专家共识(2025版)解读 2
- 银行搬迁引流活动方案
- 进修ERCP汇报护理课件
- 网络内容分发网络(CDN)创新创业项目商业计划书
- 有机磷农药中毒患者的护理
- 电力合规管理办法
- 糖尿病逆转与综合管理案例分享
- 2025高中思想政治课标测试卷(及答案)
- 2024年全国大学生西门子杯工业自动化挑战赛-ITEM2-逻辑控制赛项-工程设拓梦者队计文件
- 轨迹大数据处理技术的关键研究进展综述
- 职业暴露考试试题及答案
评论
0/150
提交评论