2024届上海外国语大学附属上外高中数学高一下期末质量跟踪监视试题含解析_第1页
2024届上海外国语大学附属上外高中数学高一下期末质量跟踪监视试题含解析_第2页
2024届上海外国语大学附属上外高中数学高一下期末质量跟踪监视试题含解析_第3页
2024届上海外国语大学附属上外高中数学高一下期末质量跟踪监视试题含解析_第4页
2024届上海外国语大学附属上外高中数学高一下期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海外国语大学附属上外高中数学高一下期末质量跟踪监视试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知=(2,3),=(3,t),=1,则=A.-3 B.-2C.2 D.32.半径为的半圆卷成一个圆锥,它的体积是()A. B. C. D.3.若长方体三个面的面积分别为2,3,6,则此长方体的外接球的表面积等于()A. B. C. D.4.已知一组数据1,3,2,5,4,那么这组数据的方差为()A.2 B.3 C.2 D.35.已知向量,,,的夹角为45°,若,则()A. B. C.2 D.36.某象棋俱乐部有队员5人,其中女队员2人,现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为()A. B. C. D.7.已知直线的方程为,,则直线的倾斜角范围()A. B.C. D.8.已知角A满足,则的值为()A. B. C. D.9.若对任意的正数a,b满足,则的最小值为A.6 B.8 C.12 D.2410.若,,则方程有实数根的概率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若两个正实数满足,且不等式有解,则实数的取值范围是____________.12.在平面直角坐标系中,为原点,,动点满足,则的最大值是.13.在轴上有一点,点到点与点的距离相等,则点坐标为____________.14.若三边长分别为3,5,的三角形是锐角三角形,则的取值范围为______.15.已知向量满足,则与的夹角的余弦值为__________.16.函数的值域是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(1)求的最小正周期;(2)求的单调增区间;(3)若求函数的值域.18.设数列满足.(1)求的通项公式;(2)求数列的前项和.19.如图,在三棱柱中,平面平面,,,为棱的中点.(1)证明:;(2)求三棱柱的高.20.的内角的对边分别为.(1)求证:;(2)在边上取一点P,若.求证:.21.已知函数.(1)求的最小正周期及单调递增区间;(2)求在区间上的最大值和最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据向量三角形法则求出t,再求出向量的数量积.【详解】由,,得,则,.故选C.【点睛】本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.2、A【解析】

根据圆锥的底面圆周长等于半圆弧长可计算出圆锥底面圆半径,由勾股定理可计算出圆锥的高,再利用锥体体积公式可计算出圆锥的体积.【详解】设圆锥的底面圆半径为,高为,则圆锥底面圆周长为,得,,所以,圆锥的体积为,故选:A.【点睛】本题考查圆锥体积的计算,解题的关键就是要计算出圆锥底面圆的半径和高,解题时要从已知条件列等式计算,并分析出一些几何等量关系,考查空间想象能力与计算能力,属于中等题.3、C【解析】

设长方体过一个顶点的三条棱长分别为,,,由已知面积求得,,的值,得到长方体对角线长,进一步得到外接球的半径,则答案可求.【详解】设长方体过一个顶点的三条棱长分别为,,,则,解得,,.长方体的对角线长为.则长方体的外接球的半径为,此长方体的外接球的表面积等于.故选:C.【点睛】本题考查长方体外接球表面积的求法,考查空间想象能力和运算求解能力,求解时注意长方体的对角线长为长方体外接球的直径.4、C【解析】

先由平均数的计算公式计算出平均数,再根据方差的公式计算即可。【详解】由题可得x=所以这组数据的方差S2故答案选C【点睛】本题考查方差的定义:一般地设n个数据:x1,x2,5、C【解析】

利用向量乘法公式得到答案.【详解】向量,,,的夹角为45°故答案选C【点睛】本题考查了向量的运算,意在考查学生的计算能力.6、B【解析】

直接利用概率公式计算得到答案.【详解】故选:【点睛】本题考查了概率的计算,属于简单题.7、B【解析】

利用直线斜率与倾斜角的关系即可求解.【详解】由直线的方程为,所以,即直线的斜率,由.所以,又直线的倾斜角的取值范围为,由正切函数的性质可得:直线的倾斜角为.故选:B【点睛】本题考查了直线的斜率与倾斜角之间的关系,同时考查了正弦函数的值域以及正切函数的性质,属于基础题.8、A【解析】

将等式两边平方,利用二倍角公式可得出的值.【详解】,在该等式两边平方得,即,解得,故选A.【点睛】本题考查同角三角函数的基本关系,考查二倍角正弦公式的应用,一般地,解三角函数有关问题时,遇到,常用平方法来求解,考查计算能力,属于中等题.9、C【解析】

利用“1”的代换结合基本不等式求最值即可【详解】∵两个正数a,b满足即a+3b=1则=当且仅当时取等号.故选C【点睛】本题考查了基本不等式求最值,巧用“1”的代换是关键,属于基础题.10、B【解析】方程有实数根,则:,即:,则:,如图所示,由几何概型计算公式可得,满足题意的概率值为:.本题选择B选项.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】试题分析:因为不等式有解,所以,因为,且,所以,当且仅当,即时,等号是成立的,所以,所以,即,解得或.考点:不等式的有解问题和基本不等式的求最值.【方法点晴】本题主要考查了基本不等式在最值中的应用,不等式的有解问题,在应用基本不等式求解最值时,呀注意“一正、二定、三相等”的判断,运用基本不等式解题的关键是寻找和为定值或是积为定值,难点在于如何合理正确的构造出定值,对于不等式的有解问题一般选用参数分离法,转化为函数的最值或借助数形结合法求解,属于中档试题.12、【解析】

试题分析:设,表示以为圆心,r=1为半径的圆,而,所以,,,故得最大值为考点:1.圆的标准方程;2.向量模的运算13、【解析】

设点的坐标,根据空间两点距离公式列方程求解.【详解】由题:设,点到点与点的距离相等,所以,,,解得:,所以点的坐标为.故答案为:【点睛】此题考查空间之间坐标系中两点的距离公式,根据公式列方程求解点的坐标,关键在于准确辨析正确计算.14、【解析】

由三边长分别为3,5,的三角形是锐角三角形,若5是最大边,则,解得范围,若是最大边,则,解得范围,即可得出.【详解】解:由三边长分别为3,5,的三角形是锐角三角形,若5是最大边,则,解得.若是最大边,则,解得.综上可得:的取值范围为.故答案为:.【点睛】本题考查了不等式的性质与解法、余弦定理、分类讨论方法,考查了推理能力与计算能力,属于中档题.15、【解析】

由得,结合条件,即可求出,的值,代入求夹角公式,即可求解.【详解】由得与的夹角的余弦值为.【点睛】本题考查数量积的定义,公式的应用,求夹角公式的应用,计算量较大,属基础题.16、【解析】

根据反余弦函数的性质,可得函数在单调递减函数,代入即可求解.【详解】由题意,函数的性质,可得函数在单调递减函数,又由,所以函数在的值域为.故答案为:.【点睛】本题主要考查了反余弦函数的单调性的应用,其中解答中熟记反余弦函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2);(3).【解析】

(1)先化简函数f(x)的解析式,再求函数的最小正周期;(2)解不等式,即得函数的增区间;(3)根据三角函数的性质求函数的值域.【详解】(1)由题得,所以函数的最小正周期为.(2)令,所以,所以函数的单调增区间为.(3),所以函数的值域为.【点睛】本题主要考查三角恒等变换,考查三角函数的图像和性质,考查三角函数的值域,意在考查学生对这些知识的理解掌握水平,属于基础题.18、(1);(1).【解析】

(1)在中,将代得:,由两式作商得:,问题得解.(1)利用(1)中结果求得,分组求和,再利用等差数列前项和公式及乘公比错位相减法分别求和即可得解.【详解】(1)由n=1得,因为,当n≥1时,,由两式作商得:(n>1且n∈N*),又因为符合上式,所以(n∈N*).(1)设,则bn=n+n·1n,所以Sn=b1+b1+…+bn=(1+1+…+n)+设Tn=1+1·11+3·13+…+(n-1)·1n-1+n·1n,①所以1Tn=11+1·13+…(n-1)·1n-1+(n-1)·1n+n·1n+1,②①-②得:-Tn=1+11+13+…+1n-n·1n+1,所以Tn=(n-1)·1n+1+1.所以,即.【点睛】本题主要考查了赋值法及方程思想,还考查了分组求和法及乘公比错位相减法求和,考查计算能力及转化能力,属于中档题.19、(1)证明见解析(2)【解析】

(1)连接,,作为棱的中点,连结,,由平面平面,得到平面,则,再由,即可证明平面,从而得证;(2)根据等体积法求出点面距.【详解】(1)证明:连接,.∵,,∴是等边三角形.作为棱的中点,连结,,∴.∵平面平面,平面平面,平面,∴平面.∵平面,∴.∵,∴平行四边形是菱形.∴.又,分别为,的中点,∴,∴.又,平面,平面.∴平面.又平面,∴.(2)解:连接,∵,,∴为正三角形.∵为的中点,∴,同理可得又∵平面平面,且平面平面,平面,∴平面.∴,又三棱柱的高即点到平面的距离.在中,,,则.又∵,∴,则.【点睛】本题考查线面垂直,线线垂直的证明,三棱锥的体积及点到平面的距离的计算,属于中档题.20、(1)详见解析;(2)详见解析.【解析】

(1)余弦定理的证明其实在课本就直接给出过它向量方法的证明,通过,等向量模长相等就可,当然我们还可以通过坐标的运算完成(如方法二)(2)通过点P,将三角形分割,这种题中多注意几个相等(公共边相等,)我们可以得到相对应的等量关系,完成本题.【详解】(1)证法一:如图,即证法二:已知中所对边分别为,以为原点,所在直线为轴建立直角坐标系,则,所以(2)令,由余弦定理得:,因为所以所以所以【点睛】(1)向量既有大小又有方向.在几何中是一种很重要的工具,比如三角形中,三边有大小,角度问题我们可以转化为向量夹角相关,所以很容易想到向量方法.(2)解组合三角形问题,多注重图形中一些恒等关系比如边长、角度

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论