广西壮族自治区桂林市第十八中2024年数学高一下期末经典模拟试题含解析_第1页
广西壮族自治区桂林市第十八中2024年数学高一下期末经典模拟试题含解析_第2页
广西壮族自治区桂林市第十八中2024年数学高一下期末经典模拟试题含解析_第3页
广西壮族自治区桂林市第十八中2024年数学高一下期末经典模拟试题含解析_第4页
广西壮族自治区桂林市第十八中2024年数学高一下期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广西壮族自治区桂林市第十八中2024年数学高一下期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.执行如图的程序框图,则输出的λ是()A.-2 B.-4 C.0 D.-2或02.已知,满足,则()A. B. C. D.3.记等差数列前项和,如果已知的值,我们可以求得()A.的值 B.的值 C.的值 D.的值4.把函数的图象沿轴向右平移个单位,再把所得图象上各点的纵坐标不变,横坐标变为原来的,可得函数的图象,则的解析式为()A. B.C. D.5.已知实数满足且,则下列选项中不一定成立的是()A. B. C. D.6.公比为2的等比数列{}的各项都是正数,且=16,则=()A.1 B.2 C.4 D.87.已知数列是等差数列,数列满足,的前项和用表示,若满足,则当取得最大值时,的值为()A.16 B.15 C.14 D.138.已知,,,则的取值范围是()A. B. C. D.9.下列结论正确的是()A.若则; B.若,则C.若,则 D.若,则;10.已知函数()的最小正周期为,则该函数的图象()A.关于直线对称 B.关于直线对称C.关于点对称 D.关于点对称二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的值为________.12.在中角所对的边分别为,若则___________13.已知等比数列的前项和为,若,且,则_____.14.在中,角A,B,C所对的边分别为a,b,c,,的平分线交AC于点D,且,则的最小值为________.15.在锐角△ABC中,BC=2,sinB+sinC=2sinA,则AB+AC=_____16.求值:_____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求的单调增区间;(2)求的图像的对称中心与对称轴.18.某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价元99.29.49.69.810销量件1009493908578(1)若销量与单价服从线性相关关系,求该回归方程;(2)在(1)的前提下,若该产品的成本是5元/件,问:产品该如何确定单价,可使工厂获得最大利润。附:对于一组数据,,……,其回归直线的斜率的最小二乘估计值为;本题参考数值:.19.2021年广东新高考将实行“”模式,即语文、数学、英语必选,物理、历史二选一,政治、地理、化学、生物四选二,共选六科参加高考.其中偏理方向是二选一时选物理,偏文方向是二选一时选历史,对后四科选择没有限定.(1)小明随机选课,求他选择偏理方向及生物学科的概率;(2)小明、小吴同时随机选课,约定选择偏理方向及生物学科,求他们选课相同的概率.20.在数列中,,,且满足,.(1)求数列的通项公式;(2)设,,求数列的前项和.21.如图,在直角梯形中,,,,,记,.(1)用,表示和;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

根据框图有,由判断条件即即可求出的值.【详解】由有.根据输出的条件是,即.所以,解得:.故选:A【点睛】本题考查程序框图和向量的加法以及数量积以及性质,属于中档题.2、A【解析】

根据对数的化简公式得到,由指数的运算公式得到=,由对数的性质得到>0,,进而得到结果.【详解】已知,=,>0,进而得到.故答案为A.【点睛】本题考查了指对函数的运算公式和对数函数的性质;比较大小常用的方法有:两式做差和0比较,分式注意同分,进行因式分解为两式相乘的形式;或者利用不等式求得最值,判断最值和0的关系.3、C【解析】

设等差数列{an}的首项为a1,公差为d,由a5+a21=2a1+24d的值为已知,再利用等差数列的求和公式,即可得出结论.【详解】设等差数列{an}的首项为a1,公差为d,∵已知a5+a21的值,∴2a1+24d的值为已知,∴a1+12d的值为已知,∵∴我们可以求得S25的值.故选:C.【点睛】本题考查等差数列的通项公式与求和公式的应用,考查学生的计算能力,属于中档题.4、C【解析】

根据三角函数图像变换的原则,即可得出结果.【详解】先把函数的图象沿轴向右平移个单位,得到;再把图像上各点的纵坐标不变,横坐标变为原来的,得到.故选C【点睛】本题主要考查三角函数的图像变换问题,熟记图像变换的原则即可,属于常考题型.5、D【解析】

由题设条件可以得到,从而可判断A,B中的不等式都是正确的,再把题设变形后可得,从而C中的不等式也是成立的,当,D中的不等式不成立,而时,它又是成立的,故可得正确选项.【详解】因为且,故,所以,故A正确;又,故,故B正确;而,故,故C正确;当时,,当时,有,故不一定成立,综上,选D.【点睛】本题考查不等式的性质,属于基础题.6、A【解析】试题分析:在等比数列中,由知,,故选A.考点:等比数列的性质.7、A【解析】

设等差数列的公差为,根据得到,推出,判断出当时,;时,;再根据,判断出对取正负的影响,进而可得出结果.【详解】设等差数列的公差为,因为数列是等差数列,,所以,因此,所以,所以,,因此,当时,;时,,因为,所以当时,,当时,,当时,,当时,因为,所以;因为所以,当时,取得最大值.故选:A【点睛】本题主要考查等差数列的应用,熟记等差数列的性质,及其函数特征即可,属于常考题型.8、D【解析】

根据所给等式,用表示出,代入中化简,令并构造函数,结合函数的图像与性质即可求得的取值范围.【详解】因为,所以,由解得,因为,所以,则由可得,令,.所以画出,的图像如下图所示:由图像可知,函数在内的值域为,即的取值范围为,故选:D.【点睛】本题考查了由等式求整式的取值范围问题,打勾函数的图像与性质应用,注意若使用基本不等式,注意等号成立条件及自变量取值范围影响,属于中档题.9、D【解析】

根据不等式的性质,结合选项,进行逐一判断即可.【详解】因,则当时,;当时,,故A错误;因,则或,故B错误;因,才有,条件不足,故C错误;因,则,则只能是,故D正确.故选:D.【点睛】本题考查不等式的基本性质,需要对不等式的性质非常熟练,属基础题.10、D【解析】∵函数()的最小正周期为,∴,,令,,,,显然A,B错误;令,可得:,,显然时,D正确故选D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由题意利用诱导公式求得的值,可得要求式子的值.【详解】,则,故答案为:.【点睛】本题主要考查诱导公式的应用,属于基础题.12、【解析】,;由正弦定理,得,解得.考点:正弦定理.13、4或1024【解析】

当时得到,当时,代入公式计算得到,得到答案.【详解】比数列的前项和为,当时:易知,代入验证,满足,故当时:故答案为:4或1024【点睛】本题考查了等比数列,忽略掉的情况是容易发生的错误.14、32【解析】

根据面积关系建立方程关系,结合基本不等式1的代换进行求解即可.【详解】如图所示,则△ABC的面积为,即ac=2a+2c,得,得,当且仅当,即3c=a时取等号;∴的最小值为32.故答案为:32.【点睛】本题考查三角形中的几何计算,属于中等题.15、1【解析】

由正弦定理化已知等式为边的关系,可得结论.【详解】∵sinB+sinC=2sinA,由正弦定理得,即.故答案为1.【点睛】本题考查正弦定理,解题时利用正弦定理进行边角关系的转化即可.16、【解析】

根据同角三角函数的基本关系:,以及反三角函数即可解决。【详解】由题意.故答案为:.【点睛】本题主要考查了同角三角函数的基本关系,同角角三角函数基本关系主要有:,.属于基础题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)对称中心,;对称轴为【解析】

利用诱导公式可将函数化为;(1)令,求得的范围即为所求单调增区间;(2)令,求得即为对称中心横坐标,进而得到对称中心;令,求得即为对称轴.【详解】(1)令,,解得:,的单调递增区间为(2)令,,解得:,的对称中心为,令,,解得:,的对称轴为【点睛】本题考查正弦型函数单调区间、对称轴和对称中心的求解,涉及到诱导公式化简函数的问题;关键是能够熟练掌握整体对应的方式,结合正弦函数的性质来求解单调区间、对称轴和对称中心.18、(1)(2)为使工厂获得最大利润,该产品的单价应定为9.5元.【解析】

(1)先根据公式求,再根据求即可求解;(2)先求出利润的函数关系式,再求函数的最值.【详解】解:(1)=…又所以故回归方程为(2)设该产品的售价为元,工厂利润为元,当时,利润,定价不合理。由得,故,,当且仅当,即时,取得最大值.因此,为使工厂获得最大利润,该产品的单价应定为9.5元.【点睛】本题考查线性回归方程和二次函数的最值.线性回归方程的计算要根据已知选择合适的公式.求二次函数的最值常用方法:1、根据函数单调性;2、配方法;3、基本不等式,注意等式成立的条件.19、(1);(2)【解析】

(1)利用列举法,列举出偏理方向和偏文方向的所有情况,即可求得小明选择偏理方向且选择了生物学科的概率.(2)利用列举法,列举出两个人选择偏理方向且带有生物学科的所有可能,即可求得两人选课相同的概率.【详解】(1)由题意知,选六科参加高考有偏理方向:(物,政,地)、(物,政,化)、(物,政,生)、(物,地,化)、(物,地,生)、(物,化,生)六种选择;偏文方向有:(史,政,地)、(史,政,化)、(史,政,生)、(史,地,化)、(史,地,生)、(史,化,生)六种选择.由以上可知共有12种选课模式.小明选择偏理方向又选择生物的概率为.(2)小明选择偏理且有生物学科的可能有:(物,政,生)、(物,地,生)、(物,化,生)三种选择,同样小吴也是三种选择;两人选课模式有:[(物,政,生),(物,政,生)]、[(物,政,生),(物,地,生]、[(物,政,生),(物,化,生)]、[(物,地,生),(物,政,生)]、[(物,地,生),(物,地,生)[(物,地,生),(物,化,生)]、[(物,化,生),(物,政,生)]、[(物,化,生),(物,地,生)[(物,化,生),(物,化,生)]由以上可知共有9种选课法,两人选课相同有三种,所以两人选课相同的概率.【点睛】本题考查了古典概型概率的求法,利用列举法写出所有可能即可求解,属于基础题.20、(1);(2).【解析】

(1)由题意知,数列是等差数列,可设该数列的公差为,根据题中条件列方程解出的值,再利用等差数列的通项公式可求出数列的通项公式;(2)先求出数列的通项公式,并将该数列的通项裂项,然后利用裂项法求出数列的前项和.【详解】(1)对任意的,,则数列是等差数列,设该数列的公

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论