甘肃省兰州市2025届高一下数学期末复习检测模拟试题含解析_第1页
甘肃省兰州市2025届高一下数学期末复习检测模拟试题含解析_第2页
甘肃省兰州市2025届高一下数学期末复习检测模拟试题含解析_第3页
甘肃省兰州市2025届高一下数学期末复习检测模拟试题含解析_第4页
甘肃省兰州市2025届高一下数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省兰州市2025届高一下数学期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,若,,则的最大值为()A. B. C.4 D.52.在中,,,则()A. B. C. D.3.把一个已知圆锥截成个圆台和一个小圆锥,已知圆台的上、下底面半径之比为,母线长为,则己知圆锥的母线长为().A. B. C. D.4.已知两点,,直线过点且与线段相交,则直线的斜率的取值范围是()A. B.C. D.或5.若a<b,则下列不等式中正确的是()A.a2<b2 B. C.a2+b2>2ab D.ac2<bc26.已知等差数列的公差为2,若成等比数列,则()A. B. C. D.7.在等差数列中,已知,数列的前5项的和为,则()A. B. C. D.8.若函数,则的值为()A. B. C. D.9.已知定义在上的偶函数满足:当时,,若,则的大小关系是()A. B. C. D.10.袋中有个大小相同的小球,其中个白球,个红球,个黑球,现在从中任意取一个,则取出的球恰好是红色或者黑色小球的概率为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.一个公司共有240名员工,下设一些部门,要采用分层抽样方法从全体员工中抽取一个容量为20的样本.已知某部门有60名员工,那么从这一部门抽取的员工人数是.12.某扇形的面积为1,它的周长为4cm,那么扇形的圆心角的大小为____________.13.化简sin2α+sin2β-sin2αsin2β+cos2αcos2β=______.14.已知,则15.如图,在四面体A-BCD中,已知棱AC的长为,其余各棱长都为1,则二面角A-CD-B的平面角的余弦值为________.16.为了研究问题方便,有时将余弦定理写成:,利用这个结构解决如下问题:若三个正实数,满足,,,则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,.(1)计算及、;(2)设,,,若,试求此时和满足的函数关系式,并求的最小值.18.如图是某设计师设计的型饰品的平面图,其中支架,,两两成,,,且.现设计师在支架上装点普通珠宝,普通珠宝的价值为,且与长成正比,比例系数为(为正常数);在区域(阴影区域)内镶嵌名贵珠宝,名贵珠宝的价值为,且与的面积成正比,比例系数为.设,.(1)求关于的函数解析式,并写出的取值范围;(2)求的最大值及相应的的值.19.如果一个数列从第2项起,每一项与它前一项的差都大于2,则称这个数列为“阿当数列”.(1)若数列为“阿当数列”,且,,,求实数的取值范围;(2)是否存在首项为1的等差数列为“阿当数列”,且其前项和满足?若存在,请求出的通项公式;若不存在,请说明理由.(3)已知等比数列的每一项均为正整数,且为“阿当数列”,,,当数列不是“阿当数列”时,试判断数列是否为“阿当数列”,并说明理由.20.已知三棱柱(如图所示),底面为边长为2的正三角形,侧棱底面,,为的中点.(1)求证:平面;(2)若为的中点,求证:平面;(3)求三棱锥的体积.21.已知函数,若,且,,求满足条件的,.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

设,由可得点的轨迹方程,再对两边平方,利用一元二次函数的性质求出最大值,即可得答案.【详解】设,,∵,∴,整理得:.∵,∴,当时,的最大值为,∴的最大值为.故选:A.【点睛】本题考查向量模的最值、模的坐标运算、一元二次函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意坐标法的运用.2、A【解析】

本题首先可根据计算出的值,然后根据正弦定理以及即可计算出的值,最后得出结果。【详解】因为,所以.由正弦定理可知,即,解得,故选A。【点睛】本题考查根据解三角形的相关公式计算的值,考查同角三角函数的相关公式,考查正弦定理的使用,是简单题。3、B【解析】

设圆锥的母线长为,根据圆锥的轴截面三角形的相似性,通过圆台的上、下底面半径之比为来求解.【详解】设圆锥的母线长为,因为圆台的上、下底面半径之比为,所以,解得.故选:B【点睛】本题主要考查了旋转体轴截面中的比例关系,还考查了运算求解的能力,属于基础题.4、D【解析】

作出示意图,再结合两点间的斜率公式,即可求得答案.【详解】,,又直线过点且与线段相交,作图如下:则由图可知,直线的斜率的取值范围是:或.故选:D【点睛】本题借直线与线段的交点问题,考查两点间的斜率公式,考查理解辨析能力,属于中档题.5、C【解析】

利用特殊值对错误选项进行排除,然后证明正确的不等式.【详解】取代入验证可知,A、D选项错误;取代入验证可知,B选项错误.对于C选项,由于,所以,即成立.故选:C【点睛】本小题主要考查不等式的性质,属于基础题.6、B【解析】

通过成等比数列,可以列出一个等式,根据等差数列的性质,可以把该等式变成关于的方程,解这个方程即可.【详解】因为成等比数列,所以有,又因为是公差为2的等差数列,所以有,故本题选B.【点睛】本题考查了等比中项的性质,考查了等差数列的性质,考查了数学运算能力.7、C【解析】

由,可求出,结合,可求出及.【详解】设数列的前项和为,公差为,因为,所以,则,故.故选C.【点睛】本题考查了等差数列的前项和,考查了等差数列的通项公式,考查了计算能力,属于基础题.8、D【解析】

根据分段函数的定义域与函数解析式的关系,代值进行计算即可.【详解】解:由已知,又,又,所以:.

故选:D.【点睛】本题考查了分段函数的函数值计算问题,抓住定义域的范围,属于基础题.9、C【解析】

根据函数的奇偶性将等价变形为,再根据函数在上单调性判断函数值的大小关系,从而得出正确选项.【详解】解因为函数为偶函数,故,因为,,所以,因为函数在上单调增,故,故选C.【点睛】本题考查了函数单调性与奇偶性的运用,解题的关键是要能根据奇偶性将函数值进行转化.10、D【解析】

利用古典概型的概率公式可计算出所求事件的概率.【详解】从袋中个球中任取一个球,取出的球恰好是一个红色或黑色小球的基本事件数为,因此,取出的球恰好是红色或者黑色小球的概率为,故选D.【点睛】本题考查古典概型概率的计算,解题时要确定出全部基本事件数和所求事件所包含的基本事件数,并利用古典概型的概率公式进行计算,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】设一部门抽取的员工人数为x,则.12、【解析】

根据扇形的面积和周长列方程组解得半径和弧长,再利用弧长公式可求得结果.【详解】设扇形的半径为,弧长为,圆心角为,则,解得,所以.故答案为:【点睛】本题考查了扇形的面积公式,考查了扇形中弧长公式,属于基础题.13、1【解析】原式=sin2α(1-sin2β)+sin2β+cos2αcos2β=sin2αcos2β+cos2αcos2β+sin2β=cos2β(sin2α+cos2α)+sin2β=1.14、28【解析】试题分析:由等差数列的前n项和公式,把等价转化为所以,然后求得a值.考点:极限及其运算15、【解析】如图,取中点,中点,连接,由题可知,边长均为1,则,中,,则,得,所以二面角的平面角即,在中,,则,所以.点睛:本题采用几何法去找二面角,再进行求解.利用二面角的定义:公共边上任取一点,在两个面内分别作公共边的垂线,两垂线的夹角就是二面角的平面角,找到二面角的平面角,再求出对应三角形的三边,利用余弦定理求解(本题中刚好为直角三角形).16、【解析】

设的角、、的对边分别为、、,在内取点,使得,设,,,利用余弦定理得出的三边长,由此计算出的面积,再利用可得出的值.【详解】设的角、、的对边分别为、、,在内取点,使得,设,,,由余弦定理得,,同理可得,,,则,的面积为,另一方面,解得,故答案为.【点睛】本题考查余弦定理的应用,问题的关键在于将题中的等式转化为余弦定理,并转化为三角形的面积来进行计算,考查化归与转化思想以及数形结合思想,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,;(2),.【解析】

(1)根据数量积和模的坐标运算计算;(2)由可得出,然后由二次函数性质求得最小值.【详解】(1)由题意及,同理,.(2)∵,∴,∴,即,又,∴时,.【点睛】本题考查向量的数量积与模的坐标运算,考查向量垂直与数量积的关系.掌握数量积的性质是解题基础.其中.18、(1)();(2),的最大值是.【解析】试题分析:(1)运用题设和实际建立函数关系并确定定义域;(2)运用基本不等式求函数的最值和取得最值的条件.试题解析:(1)因为,,,由余弦定理,,解得,由,得.又,得,解得,所以的取值范围是.(2),,则,设,则.当且仅当即取等号,此时取等号,所以当时,的最大值是.考点:阅读理解能力和数学建模能力、基本不等式及在解决实际问题中的灵活运用.【易错点晴】应用题是江苏高考每年必考的重要题型之一,也是历届高考失分较多的题型.解答这类问题的关键是提高考生的阅读理解能力和数学建模能力,以及抽象概括能力.解答好这类问题要过:“审题、理解题意、建立数学模型、求解数学模型、作答”这五个重要环节,其中审题关要求反复阅读问题中提供的一些信息,并将其与学过的数学模型进行联系,为建构数学模型打下基础,最后的作答也是必不可少的重要环节之一,应用题的解答最后一定要依据题设中提供的问题做出合理的回答,这也是失分较多一个环节.19、(1);(2)不存在,理由见详解;(3)见详解.【解析】

(1)根据题意,得到,求解即可得出结果;(2)先假设存在等差数列为“阿当数列”,设公差为,则,根据等差数列求和公式,结合题中条件,得到,即对任意都成立,判断出,推出矛盾,即可得出结果;(3)设等比数列的公比为,根据为“阿当数列”,推出在数列中,为最小项;在数列中,为最小项;得到,,再由数列每一项均为正整数,得到,或,;分别讨论,和,两种情况,结合数列的增减性,即可得出结果.【详解】(1)由题意可得:,,即,解得或;所以实数的取值范围是;(2)假设存在等差数列为“阿当数列”,设公差为,则,由可得:,又,所以对任意都成立,即对任意都成立,因为,且,所以,与矛盾,因此,不存在等差数列为“阿当数列”;(3)设等比数列的公比为,则,且每一项均为正整数,因为为“阿当数列”,所以,所以,;因为,即在数列中,为最小项;同理,在数列中,为最小项;由为“阿当数列”,只需,即,又因为数列不是“阿当数列”,所以,即,由数列每一项均为正整数,可得:,所以,或,;当,时,,则,令,则,所以,即数列为递增数列,所以,因为,所以对任意,都有,即数列是“阿当数列”;当,时,,则,显然数列是递减数列,,故数列不是“阿当数列”;综上,当时,数列是“阿当数列”;当时,数列不是“阿当数列”.【点睛】本题主要考查数列的综合,熟记等差数列与等比数列的通项公式与求和公式,以及数列的性质即可,属于常考题型.20、(1)见解析(2)见解析(3)【解析】

(1)在平面找一条直线平行即可.(2)在平面内找两

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论