版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学易试题君之名校金卷君2023-2024学年高一下数学期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某几何体的三视图如图所示(实线部分),若图中小正方形的边长均为1,则该几何体的体积是()A. B. C. D.2.直线上的点到圆上点的最近距离为()A. B. C. D.13.某部门为了了解用电量y(单位:度)与气温x(单位:°C)之间的关系,随机统计了某3天的用电量与当天气温如表所示.由表中数据得回归直线方程y=-0.8x+a,则摄氏温度(°C)4611用电量度数1074A.12.6 B.13.2 C.11.8 D.12.84.如图,各棱长均为的正三棱柱,、分别为线段、上的动点,且平面,,中点轨迹长度为,则正三棱柱的体积为()A. B. C.3 D.5.若关于的方程有且只有两个不同的实数根,则实数的取值范围是()A. B. C. D.6.已知全集,集合,,则为()A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}7.经过两条直线和的交点,且垂直于直线的直线方程为()A. B. C. D.8.某赛季中,甲、乙两名篮球队员各场比赛的得分茎叶图如图所示,若甲得分的众数为15,乙得分的中位数为13,则()A.15 B.16 C.17 D.189.如图,四棱锥的底面为平行四边形,,则三棱锥与三棱锥的体积比为()A. B. C. D.10.过点且在两坐标轴上截距相等的直线方程是()A. B.C.或 D.或二、填空题:本大题共6小题,每小题5分,共30分。11.方程的解集为____________.12.正方体中,分别是的中点,则所成的角的余弦值是__________.13.如图,在圆心角为,半径为2的扇形AOB中任取一点P,则的概率为________.14.函数f(x)=2cos(x)﹣1的对称轴为_____,最小值为_____.15.已知,若,则______.16.如图所示的茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分),已知甲组数据的中位数为17,则x的值为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知向量,,且.(1)求向量的夹角;(2)求的值.18.已知.(1)求;(2)求向量与的夹角的余弦值.19.已知等差数列的前n项和为,且,.(1)求的通项公式;(2)若,且,,成等比数列,求k的值.20.已知函数(1)求的最值、单调递减区间;(2)先把的图象向左平移个单位,再把图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,求的值.21.(2012年苏州17)如图,在中,已知为线段上的一点,且.(1)若,求的值;(2)若,且,求的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
由三视图得出原几何体是由半个圆锥与半个圆柱组成的组合体,并且由三视图得出圆柱和圆锥的底面半径,圆锥的高,圆柱的高,再由圆柱和圆锥的体积公式得解.【详解】由三视图可知,几何体是由半个圆锥与半个圆柱组成的组合体,其中圆柱和圆锥的底面半径,圆锥的高,圆柱的高所以圆柱的体积,圆锥的体积,所以组合体的体积.故选B.【点睛】本题主要考查空间几何体的三视图和空间几何体圆柱和圆锥的体积,属于基础题.2、C【解析】
求出圆心和半径,求圆心到直线的距离,此距离减去半径即得所求的结果.【详解】将圆化为标准形式可得可得圆心为,半径,而圆心到直线距离为,
因此圆上点到直线的最短距离为,故选:C.【点睛】本题考查直线和圆的位置关系,点到直线的距离公式的应用,求圆心到直线的距离是解题的关键,属于中档题.3、A【解析】
计算数据中心点,代入回归方程得到答案.【详解】x=4+6+113=7,代入回归方程y7=-0.8×7+a故答案选A【点睛】本题考查了回归方程,掌握回归方程过中心点是解题的关键.4、D【解析】
设的中点分别为,判断出中点的轨迹是等边三角形的高,由此计算出正三棱柱的边长,进而计算出正三棱柱的体积.【详解】设的中点分别为,连接.由于平面,所以.当时,中点为平面的中心,即的中点(设为点)处.当时,此时的中点为的中点.所以点的轨迹是三角形的高.由于三角形是等边三角形,而,所以.故正三棱柱的体积为.故选:D【点睛】本小题主要考查线面平行的有关性质,考查棱柱的体积计算,考查空间想象能力,考查分析与解决问题的能力,属于中档题.5、B【解析】
方程化为,可转化为半圆与直线有两个不同交点,作图后易得.【详解】由得由题意半圆与直线有两个不同交点,直线过定点,作出半圆与直线,如图,当直线过时,,,当直线与半圆相切(位置)时,由,解得.所以的取值范围是.故选:B.【点睛】本题考查方程根的个数问题,把问题转化为直线与半圆有两个交点后利用数形结合思想可以方便求解.6、C【解析】
先根据全集U求出集合A的补集,再求与集合B的并集.【详解】由题得,故选C.【点睛】本题考查集合的运算,属于基础题.7、D【解析】
首先求出两条直线的交点坐标,再根据垂直求出斜率,点斜式写方程即可.【详解】有题知:,解得:,交点.直线的斜率为,所求直线斜率为.所求直线为:,即.故选:D【点睛】本题主要考查如何求两条直线的交点坐标,同时考查了两条直线的位置关系,属于简单题.8、A【解析】
由图可得出,然后可算出答案【详解】因为甲得分的众数为15,所以由茎叶图可知乙得分数据有7个,乙得分的中位数为13,所以所以故选:A【点睛】本题考查的是茎叶图的知识,较简单9、C【解析】
先由题意,得到,推出,再由推出,由,进而可得出结果.【详解】因为底面为平行四边形,所以,所以,因为,所以,所以,所以,因此.故选C【点睛】本题主要考查棱锥体积之比,熟记棱锥的体积公式,以及等体积法的应用即可,属于常考题型.10、C【解析】
设过点A(4,1)的直线方程为y-1=k(x-4)(k≠0),令x=0,得y=1-4k;令y=0,得x=4-.由已知得1-4k=4-,∴k=-1或k=,∴所求直线方程为x+y-5=0或x-4y=0.故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、或【解析】
首先将原方程利用辅助角公式化简为,再求出的值即可.【详解】由题知:,,.所以或,.解得:或.所以解集为:或.故答案为:或【点睛】本题主要考查正弦函数的图像及特殊角的三角函数值,同时考查了辅助角公式,属于中档题.12、【解析】
取的中点,由得出异面直线与所成的角为,然后在由余弦定理计算出,可得出结果.【详解】取的中点,由且可得为所成的角,设正方体棱长为,中利用勾股定理可得,又,由余弦定理可得,故答案为.【点睛】本题考查异面直线所成角的计算,一般利用平移直线找出异面直线所成的角,再选择合适的三角形,利用余弦定理或锐角三角函数来计算,考查空间想象能力与计算能力,属于中等题.13、【解析】
根据题意,建立坐标系,求出圆心角扇形区域的面积,进而设,由数量积的计算公式可得满足的区域,求出其面积,代入几何概率的计算公式即可求解.【详解】根据题意,建立如图的坐标系,则则扇形的面积为设若,则有,即;则满足的区域为如图的阴影区域,直线与弧的交点为,易得的坐标为,则阴影区域的面积为故的概率故答案为:【点睛】本题考查几何概型,涉及数量积的计算,属于综合题.14、﹣3【解析】
利用余弦函数的图象的对称性,余弦函数的最值,求得结论.【详解】解:对于函数,令,求得,根据余弦函数的值域可得函数的最小值为,故答案为:;.【点睛】本题主要考查余弦函数的图象的对称性,余弦函数的最值,属于基础题.15、【解析】
由条件利用正切函数的单调性直接求出的值.【详解】解:函数在上单调递增,且,若,则,故答案为:.【点睛】本题主要考查正切函数的单调性,根据三角函数的值求角,属于基础题.16、【解析】
根据茎叶图中数据和中位数的定义可构造方程求得.【详解】甲组数据的中位数为,解得:故答案为:【点睛】本题考查茎叶图中中位数相关问题的求解,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】
(1)求出向量的模,对等式两边平方,最后可求出向量的夹角;(2)直接运用向量运算的公式进行运算即可.【详解】(1)向量,,,∴,又,∴,∴,∴,又∵,∴向量的夹角;(2)由(1),,,∴.【点睛】本题考查了平面向量的数量积定义,考查了平面向量的运算,考查了平面向量模公式,考查了数学运算能力.18、(1);(2).【解析】
(1)根据题意求出,即可求解;(2)向量与的夹角的余弦值为:代入求值即可得解.【详解】(1)由题:,解得:(2)向量与的夹角的余弦值为:【点睛】此题考查平面向量数量积的运算,根据运算法则求解数量积和模长,求解向量夹角的余弦值.19、(1);(2)4.【解析】
(1)设等差数列的公差为d,根据等差数列的通项公式,列出方程组,即可求解.(2)由(1),求得,再根据,,成等比数列,得到关于的方程,即可求解.【详解】(1)设等差数列的公差为d,由题意可得:,解得.所以数列的通项公式为.(2)由知,因为,,成等比数列,所以,即,解得.【点睛】本题主要考查了等差数列的通项公式,以及前n项和公式的应用,其中解答中熟记等差数列的通项公式和前n项和公式,列出方程准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.20、(1),,单调递减区间为;(2).【解析】
(1)函数,得最大值为,并解不等式,得到函数的单调递减区间;(2)由平移变换、伸缩变换得到函数,再把代入
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年云南特殊教育职业学院单招职业适应性考试题库附答案详解(突破训练)
- 2026年云南林业职业技术学院单招职业适应性测试题库附答案详解(培优a卷)
- 2026年云南省迪庆藏族自治州单招职业适应性测试题库带答案详解(满分必刷)
- 2026年云南特殊教育职业学院单招职业技能考试题库及答案详解(名师系列)
- 2026年云南特殊教育职业学院单招职业适应性考试题库及答案详解(考点梳理)
- 2026年云南理工职业学院单招综合素质考试题库及答案详解(有一套)
- 2026年云南省楚雄彝族自治州单招职业适应性考试题库附参考答案详解(夺分金卷)
- 2026年云南国土资源职业学院单招职业技能测试题库附参考答案详解(模拟题)
- 2026年云南省文山壮族苗族自治州单招职业适应性考试题库带答案详解(考试直接用)
- 2026年仙桃职业学院单招综合素质考试题库参考答案详解
- (一模)2026年合肥市高三第一次教学质量检测英语试卷(含答案)+听力音频+听力原文
- 2025年河南省濮阳市辅警招聘考试题题库(含参考答案)
- 老舍骆驼祥子第一章
- 康腾杯案例分析大赛作品
- 关于大学生就业创业指导课程的调查问卷
- 单片机在线系统AY-MPU89S51E课件
- 电休克治疗申请书
- 护理药理学(高职)PPT完整全套教学课件
- 压力容器制造工序质控点及检验内容一览表
- 检验科15项质量控制指标(检验科质控小组活动记录)
- 南京市2011版劳动合同
评论
0/150
提交评论