江西省上饶市重点中学2025届高一数学第二学期期末预测试题含解析_第1页
江西省上饶市重点中学2025届高一数学第二学期期末预测试题含解析_第2页
江西省上饶市重点中学2025届高一数学第二学期期末预测试题含解析_第3页
江西省上饶市重点中学2025届高一数学第二学期期末预测试题含解析_第4页
江西省上饶市重点中学2025届高一数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省上饶市重点中学2025届高一数学第二学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,则此三角形解的情况是()A.一解 B.两解 C.一解或两解 D.无解2.已知数列的前项和为,直线与圆:交于两点,且.记,其前项和为,若存在,使得有解,则实数取值范围是()A. B. C. D.3.为了了解所加工的一批零件的长度,抽测了其中个零件的长度,在这个工作中,个零件的长度是()A.总体 B.个体 C.样本容量 D.总体的一个样本4.抽查10件产品,设“至少抽到2件次品”为事件,则的对立事件是()A.至多抽到2件次品 B.至多抽到2件正品C.至少抽到2件正品 D.至多抽到一件次品5.已知直线的倾斜角为,在轴上的截距为2,则此直线方程为()A. B. C. D.6.已知函数,则有A.的图像关于直线对称 B.的图像关于点对称C.的最小正周期为 D.在区间内单调递减7.在中,角A,B,C的对边分别为a,b,c.若,则一定是()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等腰或直角三角形8.一只小狗在图所示的方砖上走来走去,最终停在涂色方砖的概率为()A. B. C. D.9.已知向量,,若,则实数a的值为A. B.2或 C.或1 D.10.书架上有2本数学书和2本语文书,从这4本书中任取2本,那么互斥但不对立的两个事件是()A.“至少有1本数学书”和“都是语文书”B.“至少有1本数学书”和“至多有1本语文书”C.“恰有1本数学书”和“恰有2本数学书”D.“至多有1本数学书”和“都是语文书”二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若,则的取值围为_________.12.设数列满足,,,,______.13.在中,是斜边的中点,,,平面,且,则_____.14.设,,,则,,从小到大排列为______15.如图,在三棱锥中,它的每个面都是全等的正三角形,是棱上的动点,设,分别记与,所成角为,,则的取值范围为__________.16.已知线段上有个确定的点(包括端点与).现对这些点进行往返标数(从…进行标数,遇到同方向点不够数时就“调头”往回数).如图:在点上标,称为点,然后从点开始数到第二个数,标上,称为点,再从点开始数到第三个数,标上,称为点(标上数的点称为点),……,这样一直继续下去,直到,,,…,都被标记到点上,则点上的所有标记的数中,最小的是_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的1000名群众中随机抽取n名群众,按他们的年龄分组:第1组,第2组,第3组,第4组,第5组,其中第1组有6人,得到的频率分布直方图如图所示.(1)求m,n的值,并估计抽取的n名群众中年龄在的人数;(2)已知第1组群众中男性有2人,组织方要从第1组中随机抽取3名群众组成维权志愿者服务队,求至少有两名女生的概率.18.如图,三棱柱的侧面是边长为的菱形,,且.(1)求证:;(2)若,当二面角为直二面角时,求三棱锥的体积.19.已知等比数列的前项和为,公比,,.(1)求等比数列的通项公式;(2)设,求的前项和.20.如图,在平面四边形中,已知,,在上取点,使得,连接,若,。(1)求的值;(2)求的长。21.已知平面向量,,,其中,(1)若为单位向量,且,求的坐标;(2)若且与垂直,求向量,夹角的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由题意知,,,,∴,如图:∵,∴此三角形的解的情况有2种,故选B.2、D【解析】

根据题意,先求出弦长,再表示出,得到,求出数列的通项公式,再表示出,用错位相减求和求出,再求解即可.【详解】根据题意,圆的半径,圆心到直线的距离,所以弦长,所以,当时,,所以,时,,所以,得,所以数列是以为首项,为公比的等比数列,所以,,,所以,,,所以,由有解,,只需大于的最小值即可,因为,所以,所以.故选:D【点睛】本题主要考查求圆的弦长、由和求数列通项、错位相减求数列的和和解不等式有解的情况,考查学生的分析转化能力和计算能力,属于难题.3、D【解析】

根据总体与样本中的相关概念进行判断.【详解】由题意可知,在这个工作中,个零件的长度是总体的一个样本,故选D.【点睛】本题考查总体与样本中相关概念的理解,属于基础题.4、D【解析】

由对立事件的概念可知,直接写出其对立事件即可.【详解】“至少抽到2件次品”的对立事件为“至多抽到1件次品”,故选D【点睛】本题主要考查对立事件的概念,熟记对立事件的概念即可求解,属于基础题型.5、D【解析】

由题意可得直线的斜率和截距,由斜截式可得答案.【详解】解:∵直线的倾斜角为45°,∴直线的斜率为k=tan45°=1,由斜截式可得方程为:y=x+2,故选:D.【点睛】本题考查直线的斜截式方程,属基础题.6、B【解析】

把函数化简后再判断.【详解】,由正切函数的性质知,A、C、D都错误,只有B正确.【点睛】本题考查二倍角公式和正切函数的性质.三角函数的性质问题,一般要把函数化为一个角的一个三角函数形式,然后结合相应的三角函数得出结论.7、D【解析】

根据正弦定理得到,计算得到答案.【详解】,则,即.故或,即.故选:.【点睛】本题考查了根据正弦定理判断三角形形状,意在考查学生的应用能力.8、C【解析】

方砖上共分为九个全等的正方形,涂色方砖为其中的两块,由几何概型的概率公式可计算出所求事件的概率.【详解】由图形可知,方砖上共分为九个全等的正方形,涂色方砖为其中的两块,由几何概型的概率公式可知,小狗最终停在涂色方砖的概率为,故选:C.【点睛】本题考查利用几何概型概率公式计算事件的概率,解题时要理解事件的基本类型,正确选择古典概型和几何概型概率公式进行计算,考查计算能力,属于基础题.9、C【解析】

根据题意,由向量平行的坐标表示公式可得,解可得a的值,即可得答案.【详解】根据题意,向量,,若,则有,解可得或1;故选C.【点睛】本题考查向量平行的坐标表示方法,熟记平行的坐标表示公式得到关于a的方程是关键,是基础题10、C【解析】

两个事件互斥但不对立指的是这两个事件不能同时发生,也可以都不发生,逐一判断即可【详解】对于A:“至少有1本数学书”和“都是语文书”是对立事件,故不满足题意对于B:“至少有1本数学书”和“至多有1本语文书”可以同时发生,故不满足题意对于C:“恰有1本数学书”和“恰有2本数学书”互斥但不对立,满足题意对于D:“至多有1本数学书”和“都是语文书”可以同时发生,故不满足题意故选:C【点睛】本题考查互斥而不对立的两个事件的判断,考查互斥事件、对立事件的定义等基础知识,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由函数,根据,得到,再由,得到,结合余弦函数的性质,即可求解.【详解】由题意,函数,又由,即,即,因为,则,所以或,即或,所以实数的取值围为.故答案为:.【点睛】本题主要考查了余弦的倍角公式,以及三角不等式的求解,其中解答中熟练应用余弦函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.12、8073【解析】

对分奇偶讨论求解即可【详解】当为偶数时,当为奇数时,故当为奇数时,故故答案为8073【点睛】本题考查数列递推关系,考查分析推理能力,对分奇偶讨论发现规律是解决本题的关键,是难题13、【解析】

由EC垂直Rt△ABC的两条直角边,可知EC⊥面ABC,再根据D是斜边AB的中点,AC=6,BC=8,可求得CD的长,根据勾股定理可求得DE的长.【详解】如图,EC⊥面ABC,而CD⊂面ABC,∴EC⊥CD,∵AC=6,BC=8,EC=12,△ABC是直角三角形,D是斜边AB的中点,∴CD=5,ED1.故答案为1.【点睛】本题主要考查了线面垂直的判定和性质定理,利用勾股定理求线段的长度,考查了空间想象能力和推理论证能力,属于基础题.14、【解析】

首先利用辅助角公式,半角公式,诱导公式分别求出,,的值,然后结合正弦函数的单调性对,,排序即可.【详解】由题知,,,因为正弦函数在上单调递增,所以.故答案为:.【点睛】本题考查了辅助角公式,半角公式,诱导公式,正弦函数的单调区间,属于基础题.15、【解析】

作交于,连接,可得是与所成的角根据等腰三角形的性质,作交于,同理可得,根据,的关系即可得解.【详解】解:作交于,连接,因为三棱锥中,它的每个面都是全等的正三角形,为正三角形,,,是与所成的角,根据等腰三角形的性质.作交于,同理可得,则,∵,∴,得.故答案为:【点睛】本题考查异面直线所成的角,属于中档题.16、【解析】

将线段上的点考虑为一圆周,所以共有16个位置,利用规则,可知标记2019的是,2039190除以16的余数为6,即线段的第6个点标为2019,则,令,即可得.【详解】依照题意知,标有2的是1+2,标有3的是1+2+3,……,标有2019的是1+2+3+……+2019,将将线段上的点考虑为一圆周,所以共有16个位置,利用规则,可知标记2019的是,2039190除以16的余数为6,即线段的第6个点标为2019,,令,,解得,故点上的所有标记的数中,最小的是3.【点睛】本题主要考查利用合情推理,分析解决问题的能力.意在考查学生的逻辑推理能力,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,年龄在的人数为(2)【解析】

(1)根据第一组的频数和频率可得,由所有频率和为1可得,再求得间的频率后可得人数;(2)把第一组人数编号,如男性为,女性为,然后用列举法写出任取3人的所有基本事件及至少有两名女生的基本事件,计数后可得所求概率.【详解】(1),设第2组的频率为f,,所以,第3组和第4组的频率为,年龄在的人数为;(2)记第1组中的男性为,女性为,随机抽取3名群众的基本事件是:,,共20种;其中至少有两名女性的基本事件是:共16种.所以至少有两名女性的概率为.【点睛】本题考查频率分布直方图,考查古典概型.解题关键是掌握性质:频率分布直方图中所有频率(小矩形面积)之和为1.18、(1)见解析(2)【解析】

(1)利用直线与平面垂直的判定,结合三角形全等判定,得到,再次结合三角形全等,即可.(2)法一:建立坐标系,分别计算的法向量,结合两向量夹角为直角,计算出的值,然后结合,即可.法二:设出OA=x,用x分别表示AB,BD,AD,结合,建立方程,计算x,结合,即可.【详解】(1)连结,交于点,连结,因为侧面是菱形,所以,又因为,,所以平面,而平面,所以,因为,所以,而,所以,.(2)因为,,所以,(法一)以为坐标原点,所以直线为轴,所以直线为轴,所以直线为轴建立如图所示空间直角坐标系,设,则,,,,,所以,,,设平面的法向量,所以令,则,,取,设平面的法向量,所以令,则,,取,依题意得,解得.所以.(法二)过作,连结,由(1)知,所以且,所以是二面角的平面角,依题意得,,所以,设,则,,又由,,所以由,解得,所以.【点睛】本道题考查了直线与平面垂直判定,考查了利用空间向量解决二面角问题,难度较难.19、(1)(2)【解析】

(1)将已知两式作差,利用等比数列的通项公式,可得公比,由等比数列的求和可得首项,进而得到所求通项公式;(2)求得bn=n,,由裂项相消求和可得答案.【详解】(1)等比数列的前项和为,公比,①,②.②﹣①,得,则,又,所以,因为,所以,所以,所以;(2),所以前项和.【点睛】裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列.裂项相消法求和,常见的有相邻两项的裂项求和,还有一类隔一项的裂项求和,如或.20、(1);(2).【解析】试题分析:(1)在中,直接由正弦定理求出;(2)在中,,,可求出,在中,直接由余弦定理可求得.试题解析:(1)在中,据正弦定理,有.∵,,,∴.(2)由平面几何知识,可知,在中,∵,,∴.∴.在中,据余弦定理,有∴点睛:此题考查了正弦定理、余弦定理的应用,利用正弦、余弦定理可以很好得解决了

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论