版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长沙市明达中学2025届数学高一下期末达标检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.集合,,则()A. B.C. D.2.平行四边形中,若点满足,,设,则()A. B. C. D.3.右边茎叶图记录了甲、乙两组各十名学生在高考前体检中的体重(单位:).记甲组数据的众数与中位数分别为,乙组数据的众数与中位数分别为,则()A. B.C. D.4.设,,,则的最小值为()A.2 B.4 C. D.5.已知函数的最小正周期是,其图象向右平移个单位后得到的函数为奇函数.有下列结论:①函数的图象关于点对称;②函数的图象关于直线对称;③函数在上是减函数;④函数在上的值域为.其中正确结论的个数是()A.1 B.2 C.3 D.46.已知向量=(3,4),=(2,1),则向量与夹角的余弦值为()A. B. C. D.7.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在位置为,若将军从山脚下的点处出发,河岸线所在直线方程为,则“将军饮马”的最短总路程为()A.4 B.5 C. D.8.已知数列满足,,,则的值为()A.12 B.15 C.39 D.429.水平放置的,用斜二测画法作出的直观图是如图所示的,其中,,则绕AB所在直线旋转一周后形成的几何体的表面积为()A. B. C. D.10.如图是棱长为的正方体的平面展开图,则在这个正方体中直线所成角的大小为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等腰三角形底角的余弦值等于,则这个三角形顶角的正弦值为________.12.数列定义为,则_______.13.如图,分别沿长方形纸片和正方形纸片的对角线剪开,拼成如图所示的平行四边形,且中间的四边形为正方形.在平行四边形内随机取一点,则此点取自阴影部分的概率是______________14.已知与之间的一组数据,则与的线性回归方程必过点__________.15.函数,的值域为________16.函数在区间上的值域为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在中,为边上一点,,若.(1)若是锐角三角形,,求角的大小;(2)若锐角三角形,求的取值范围.18.已知.(1)解关于的不等式;(2)若不等式的解集为,求实数,的值.19.某学校为了了解高三文科学生第一学期数学的复习效果.从高三第一学期期末考试成绩中随机抽取50名文科考生的数学成绩,分成6组制成如图所示的频率分布直方图.(1)试利用此频率分布直方图求的值及这50名同学数学成绩的平均数的估计值;(2)该学校为制定下阶段的复习计划,从被抽取的成绩在的同学中选出3位作为代表进行座谈,若已知被抽取的成绩在的同学中男女比例为,求至少有一名女生参加座谈的概率.20.正项数列:,满足:是公差为的等差数列,是公比为2的等比数列.(1)若,求数列的所有项的和;(2)若,求的最大值;(3)是否存在正整数,满足?若存在,求出的值;若不存在,请说明理由.21.已知是圆的直径,垂直圆所在的平面,是圆上任一点.求证:平面⊥平面.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
求出中不等式的解集确定出,找出与的交集即可.【详解】解:由中不等式变形得:,解得:,即,,,故选:.【点睛】本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题.2、B【解析】
画出平行四边形,在上取点,使得,在上取点,使得,由图中几何关系可得到,即可求出的值,进而可以得到答案.【详解】画出平行四边形,在上取点,使得,在上取点,使得,则,故,,则.【点睛】本题考查了平面向量的线性运算,考查了平面向量基本定理的应用,考查了平行四边形的性质,属于中档题.3、D【解析】甲组数据的众数为x1=64,乙组数据的众数为x2=66,则x1<x2;甲组数据的中位数为y1==65,乙组数据的中位数为y2==66.5,则y1<y2.4、D【解析】
利用基本不等式可得,再结合代入即可得出答案.【详解】解:∵,,,∴,∴,当且仅当即,时等号成立,∴,故选:D.【点睛】本题主要考查基本不等式求最值,要注意条件“一正二定三相等”,属于中档题.5、C【解析】
根据函数最小正周期可求得,由函数图象平移后为奇函数,可求得,即可得函数的解析式.再根据正弦函数的对称性判断①②,利用函数的单调区间判断③,由正弦函数的图象与性质判断④即可.【详解】函数的最小正周期是则,即向右平移个单位可得由为奇函数,可知解得因为所以当时,则对于①,当时,代入解析式可得,即点不为对称中心,所以①错误;对于②,当时带入的解析式可得,所以函数的图象关于直线对称,所以②正确;对于③,的单调递减区间为解得当时,单调递减区间为,而,所以函数在上是减函数,故③正确;对于④,当时,由正弦函数的图像与性质可知,,故④正确.综上可知,正确的为②③④故选:C【点睛】本题考查根据三角函数性质和平移变换求得解析式,再根据正弦函数的图像与性质判断选项,属于基础题.6、A【解析】
由向量的夹角公式计算.【详解】由已知,,.∴.故选A.【点睛】本题考查平面向量的数量积,掌握数量积公式是解题基础.7、C【解析】
求出点A关于直线的对称点,再求解该对称点与B点的距离,即为所求.【详解】根据题意,作图如下:因为点,设其关于直线的对称点为故可得,解得,即故“将军饮马”的最短总路程为.故选:C.【点睛】本题考查点关于直线的对称点的坐标的求解,以及两点之间的距离公式,属基础题.8、B【解析】
根据等差数列的定义可得数列为等差数列,求出通项公式即可.【详解】由题意得所以为等差数列,,,选择B【点睛】本题主要考查了判断是否为等差数列以及等差数列通项的求法,属于基础题.9、B【解析】
先根据斜二测画法的性质求出原图形,再分析绕AB所在直线旋转一周后形成的几何体的表面积即可.【详解】根据斜二测画法的性质可知,原是以为底,高为的等腰三角形.又.故为边长为2的正三角形.则绕AB所在直线旋转一周后形成的几何体可看做两个以底面半径为,高为的圆锥组合而成.故表面积为.故选:B【点睛】本题主要考查了斜二测画法还原几何图形与旋转体的侧面积求解.需要根据题意判断出旋转后的几何体形状再用公式求解.属于中档题.10、C【解析】
根据异面直线所成的角的定义,先作其中一条的平行线,作出异面直线所成的角,然后求解.【详解】如图所示:在正方体中,,所以直线所成角,由正方体的性质,知,所以.故选:C【点睛】本题主要考查了异面直线所成的角,还考查了推理论证的能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
已知等腰三角形可知为锐角,利用三角形内角和为,建立底角和顶角之间的关系,再求解三角函数值.【详解】设此三角形的底角为,顶角为,易知为锐角,则,,所以.【点睛】给值求值的关键是找准角与角之间的关系,再利用已知的函数求解未知的函数值.12、【解析】
由已知得两式,相减可发现原数列的奇数项和偶数项均为等差数列,分类讨论分别算出奇数项的和和偶数项的和,再相加得原数列前的和【详解】两式相减得数列的奇数项,偶数项分别成等差数列,,,,数列的前2n项中所有奇数项的和为:,数列的前2n项中所有偶数项的和为:【点睛】对于递推式为,其特点是隔项相减为常数,这种数列要分类讨论,分偶数项和奇数项来研究,特别注意偶数项的首项为,而奇数项的首项为.13、【解析】
设正方形的边长为,正方形的边长为,分别求出阴影部分的面积和平行四边形的面积,最后利用几何概型公式求出概率.【详解】设正方形的边长为,正方形的边长为,在长方形中,,故平行四边形的面积为,阴影部分的面积为,所以在平行四边形KLMN内随机取一点,则此点取自阴影部分的概率是.【点睛】本题考查了几何概型概率的求法,求出平行四边形的面积是解题的关键.14、【解析】
根据线性回归方程一定过样本中心点,计算这组数据的样本中心点,求出和的平均数即可求解.【详解】由题意可知,与的线性回归方程必过样本中心点,,所以线性回归方程必过.故答案为:【点睛】本题是一道线性回归方程题目,需掌握线性回归方程必过样本中心点这一特征,属于基础题.15、【解析】
先求的值域,再求的值域即可.【详解】因为,故,故.故答案为:【点睛】本题主要考查了余弦函数的值域与反三角函数的值域等,属于基础题型.16、【解析】
由二倍角公式降幂,再由两角和的正弦公式化函数为一个角的一个三角函数形式,结合正弦函数性质可求得值域.【详解】,,则,.故答案为:.【点睛】本题考查三角恒等变换(二倍角公式、两角和的正弦公式),考查正弦函数的的单调性和最值.求解三角函数的性质的性质一般都需要用三角恒等变换化函数为一个角的一个三角函数形式,然后结合正弦函数的性质得出结论.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)利用正弦定理,可得,然后利用,可得结果.(2)【详解】在中,,又,,所以,又是锐角三角形所以,所以又,则,所以故(2)由,所以,即由锐角三角形,所以所以,所以故,则所以【点睛】本题主要考查正弦定理边角互换,重点掌握公式,难点在于对角度范围求取,属中档题.18、(1);(2)或.【解析】
(1),再解一元二次不等式即可;(2)由题意得,,代入即可求出实数,的值.【详解】(1)∵,∴,∴,解得,∴原不等式的解集为;(2)由题意得,,即,解得或,∴或.【点睛】本题主要考查一元二次不等式的解法,考查三个二次之间的关系,考查转化与化归思想,属于基础题.19、(1);平均数的估计值(2)【解析】
(1)根据各小矩形面积和为1可求得的值;由频率分布直方图,结合平均数的求法即可求解.(2)根据频率分布直方图先求得成绩在的同学人数,结合分层抽样可得男生4人,女生2人,设男生分别为;女生分别为,利用列举法可得抽取3人的所有情况,进而得至少有一名女生的情况,即可由古典概型概率公式求解.【详解】(1)由题,解得,由频率分布直方图,得这50名同学数学成绩的平均数的估计值为:(2)由频率分布直方图知,成绩在的同学有人,由比例可知男生4人,女生2人,记男生分别为;女生分别为,则从6名同学中选出3人的所有可能如下:共20种,其中不含女生的有4种,设至少有一名女生参加座谈为事件,则至少有一名女生参加座谈的概率.【点睛】本题考查了频率分布直方图的性质及平均数求法,分层抽样及各组人数的确定方法,列举法求古典概型的概率,属于基础题.20、(1)84;(2)1033;(3)存在,【解析】
(1)由题意可得:,即为:2,4,6,8,10,12,14,16,8,4;可得的值;(2)由题意可得,故有;即,即必是2的整数幂,要最大,必需最大,,可得出的最大值;(3)由是公差为的等差数列,是公比为2的等比数列,可得与,可得k与m的方程,一一验算k的值可得答案.【详解】解:(1)由已知,故为:2,4,6,8,10,12,14,16;公比为2,则对应的数为2,4,8,16,从而即为:2,4,6,8,10,12,14,16,8,4;此时(2)是首项为2,公差为2的等差数列,故,从而,而首项为2,公比为2的等比数列且,故有;即,即必是2的整数幂又,要最大,必需最大,,故的最大值为,所以,即的最大值为1033(3)由数列是公差为的等差
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026福建漳州开发区育才实验小学招聘4人笔试备考题库及答案解析
- 2026青海省海西州乌兰县第一批县级公益性岗位招聘54人笔试备考试题及答案解析
- 什邡市卫健系统2025年公开考核招聘急需紧缺人才部分岗位降低开考比例笔试备考试题及答案解析
- 2026年西安太白学校教师招聘笔试模拟试题及答案解析
- 2026年甘肃畜牧工程职业技术学院高职单招职业适应性测试备考题库带答案解析
- 2026云南玉溪市华宁县卫生健康局事业单位招聘9人笔试参考题库及答案解析
- 2026福建省连江国有林场招聘劳务派遣人员2人笔试备考试题及答案解析
- 2025广东中山西区铁城初级中学(沙朗校区)教师招聘2人笔试参考题库及答案解析
- 2026重庆九龙坡区铁马小学校招聘3人笔试参考题库及答案解析
- 2026云南玉溪市澄江市抚仙湖管理局招聘综合行政执法辅助员4人笔试参考题库及答案解析
- 教育机构安全生产举报奖励制度
- 妊娠合并胆汁淤积综合征
- GB/T 4706.11-2024家用和类似用途电器的安全第11部分:快热式热水器的特殊要求
- FZ∕T 61002-2019 化纤仿毛毛毯
- 《公输》课文文言知识点归纳
- 碎石技术供应保障方案
- 园林苗木容器育苗技术
- 23秋国家开放大学《机电一体化系统设计基础》形考作业1-3+专题报告参考答案
- 2023年工装夹具设计工程师年终总结及下一年计划
- 第七章腭裂课件
- 儿科学热性惊厥课件
评论
0/150
提交评论