版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省大丰市新丰中学高一数学第二学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是定义在上的奇函数,当时,,那么不等式的解集是()A. B.C. D.2.在正方体中,直线与直线所成角是()A. B. C. D.3.为比较甲、乙两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为:()A.①③ B.①④ C.②③ D.②④4.如图所示,已知以正方体所有面的中心为顶点的多面体的体积为,则该正方体的外接球的表面积为()A. B. C. D.5.设全集,集合,,则()A. B.C. D.6.已知无穷等比数列的公比为,前项和为,且,下列条件中,使得恒成立的是()A., B.,C., D.,7.当为第二象限角时,的值是().A. B. C. D.8.在中,,,,则()A. B.或 C.或 D.9.函数的部分图象如图,则()()A.0 B. C. D.610.设等比数列的前项和为,若,公比,则的值为()A.15 B.16 C.30 D.31二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在三棱锥中,它的每个面都是全等的正三角形,是棱上的动点,设,分别记与,所成角为,,则的取值范围为__________.12.已知平面向量,若,则________13.函数的反函数是______.14.不共线的三个平面向量,,两两所成的角相等,且,,则__________.15.已知,则16.计算:__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.下表是某地一家超市在2018年一月份某一周内周2到周6的时间与每天获得的利润(单位:万元)的有关数据.星期星期2星期3星期4星期5星期6利润23569(1)根据上表提供的数据,用最小二乘法求线性回归直线方程;(2)估计星期日获得的利润为多少万元.参考公式:18.如图所示,经过村庄有两条夹角为的公路,根据规划要在两条公路之间的区域内修建一工厂,分别在两条公路边上建两个仓库(异于村庄),要求(单位:千米),记.(1)将用含的关系式表示出来;(2)如何设计(即为多长时),使得工厂产生的噪声对居民影响最小(即工厂与村庄的距离最大)?19.已知数列的前n项和为(),且满足,().(1)求证是等差数列;(2)求数列的通项公式.20.若(1)化简;(2)求函数的单调递增区间.21.已知分别是的三个内角所对的边.(1)若的面积,求的值;(2)若,且,试判断的形状.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
根据奇函数的性质求出的解析式,然后分类讨论求出不等式的解集.【详解】因为是定义在上的奇函数,所以有,显然是不等式的解集;当时,;当时,,综上所述:不等式的解集是,故本题选B.【点睛】本题考查了利用奇函数性质求解不等式解集问题,考查了分类思想,正确求出函数的解析式是解题的关键.2、B【解析】
直线与直线所成角为,为等边三角形,得到答案.【详解】如图所示:连接易知:直线与直线所成角为为等边三角形,夹角为故答案选B【点睛】本题考查了异面直线夹角,意在考查学生的空间想象能力.3、C【解析】
根据中位数,平均数,方差的概念计算比较可得.【详解】甲的中位数为29,乙的中位数为30,故①不正确;甲的平均数为29,乙的平均数为30,故②正确;从比分来看,乙的高分集中度比甲的高分集中度高,故③正确,④不正确.故选C.【点睛】本题考查了茎叶图,属基础题.平均数即为几个数加到一起除以数据的个数得到的结果.4、A【解析】
设正方体的棱长为,则中间四棱锥的底面边长为,由已知多面体的体积求解,得到正方体外接球的半径,则外接球的表面积可求.【详解】设正方体的棱长为,则中间四棱锥的底面边长为,多面体的体积为,即.正方体的对角线长为.则正方体的外接球的半径为.表面积为.故选:.【点睛】本题考查几何体的体积的求法,考查空间想象能力以及计算能力,是基础题.5、A【解析】
进行交集、补集的运算即可.【详解】∁UB={x|﹣2<x<1};∴A∩(∁UB)={x|﹣1<x<1}.故选:A.【点睛】考查描述法的定义,以及交集、补集的运算.6、B【解析】
由已知推导出,由此利用排除法能求出结果.【详解】,,,,,若,则,故A与C不可能成立;若,则,故B成立,D不成立.故选:B【点睛】本题考查了等比数列的前项和公式以及排除法在选择题中的应用,属于中档题.7、C【解析】
根据为第二象限角,,,去掉绝对值,即可求解.【详解】因为为第二象限角,∴,,∴,故选C.【点睛】本题重点考查三角函数值的符合,三角函数在各个象限内的符号可以结合口诀:一全正,二正弦,三正切,四余弦,增加记忆印象,属于基础题8、B【解析】
利用正弦定理求出,然后利用三角形的内角和定理可求出.【详解】由正弦定理得,得,,,则或.当时,由三角形的内角和定理得;当时,由三角形的内角和定理得.因此,或.故选B.【点睛】本题考查利用正弦定理和三角形的内角和定理求角,解题时要注意大边对大角定理来判断出角的大小关系,考查计算能力,属于基础题.9、D【解析】
先利用正切函数求出A,B两点的坐标,进而求出与的坐标,再代入平面向量数量积的运算公式即可求解.【详解】因为y=tan(x)=0⇒xkπ⇒x=4k+2,由图得x=2;故A(2,0)由y=tan(x)=1⇒xk⇒x=4k+3,由图得x=3,故B(3,1)所以(5,1),(1,1).∴()5×1+1×1=1.故选D.【点睛】本题主要考查平面向量数量积的坐标运算,考查了利用正切函数值求角的运算,解决本题的关键在于求出A,B两点的坐标,属于基础题.10、A【解析】
直接利用等比数列前n项和公式求.【详解】由题得.故选A【点睛】本题主要考查等比数列求和,意在考查学生对该知识的理解掌握水平和分析推理能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
作交于,连接,可得是与所成的角根据等腰三角形的性质,作交于,同理可得,根据,的关系即可得解.【详解】解:作交于,连接,因为三棱锥中,它的每个面都是全等的正三角形,为正三角形,,,是与所成的角,根据等腰三角形的性质.作交于,同理可得,则,∵,∴,得.故答案为:【点睛】本题考查异面直线所成的角,属于中档题.12、1【解析】
根据即可得出,解出即可.【详解】∵;∴;解得,故答案为1.【点睛】本题主要考查向量坐标的概念,以及平行向量的坐标关系,属于基础题.13、,【解析】
求出函数的值域作为其反函数的定义域,再由求出其反函数的解析式,综合可得出答案.【详解】,则,由可得,,因此,函数的反函数是,.故答案为:,.【点睛】本题考查反三角函数的求解,解题时注意求出原函数的值域作为其反函数的定义域,考查计算能力,属于中等题.14、4【解析】
故答案为:4【点睛】本题主要考查向量的位置关系,考查向量模的运算的处理方法.由于三个向量两两所成的角相等,故它们两两的夹角为,由于它们的模都是已知的,故它们两两的数量积也可以求出来,对后平方再开方,就可以计算出最后结果.15、28【解析】试题分析:由等差数列的前n项和公式,把等价转化为所以,然后求得a值.考点:极限及其运算16、0【解析】
直接利用数列极限的运算法则,分子分母同时除以,然后求解极限可得答案.【详解】解:,故答案为:0.【点睛】本题主要考查数列极限的运算法则,属于基础知识的考查.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、见解析【解析】
(1)根据表中所给数据,求出横标的平均数,把求得的数据代入线性回归方程的系数公式,利用最小二乘法得到结果,写出线性回归方程。(2)根据二问求得的线性回归方程,代入所给的的值,预报出销售价格的估计值,这个数字不是一个准确数值。【详解】(1)由题意可得,,因此,,所以,-所以;(2)由(1)可得,当时,(万元),即星期日估计活动的利润为10.1万元。【点睛】关键点通过参考公式求出,的值,通过线性回归方程求解的是一个估计值。18、(1),;(2).【解析】
(1)根据正弦定理,得到,进而可求出结果;(2)由余弦定理,得到,结合题中数据,得到,取最大值时,噪声对居民影响最小,即可得出结果.【详解】(1)因为,在中,由正弦定理可得:,所以,;(2)由题意,由余弦定理可得:,又由(1)可得,所以,当且仅当,即时,取得最大值,工厂产生的噪声对居民影响最小,此时.【点睛】本题主要考查正弦定理与余弦定理的应用,熟记正弦定理与余弦定理即可,属于常考题型.19、(1)证明见解析;(2).【解析】
(1)当时,由代入,化简得出,由此可证明出数列是等差数列;(2)求出数列的通项公式,可得出,由可得出在时的表达式,再对是否满足进行检验,可得出数列的通项公式.【详解】(1)当时,,,即,,等式两边同时除以得,即,因此,数列是等差数列;(2)由(1)知,数列是以为首项,以为公差的等差数列,,则.,得.不适合.综上所述,.【点睛】本题考查等差数列的证明,同时也考查了数列通项公式的求解,解题的关键就是利用关系式进行计算,考查推理能力与计算能力,属于中等题.20、(1)(2)【解析】
(1)利用利用诱导公式化简得解析式,可的结果.(2)利用余弦函数的单调性求得函数的单调递增区间.【详解】(1).(2)令,,的单调递增区间为.【点睛】本题考查利用诱导公式化简求值、求余弦函数的单调区间,考查函数与方程思想、转
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数据库结构与组织
- 确保安全课件
- 中小学招生优惠奖励政策方案
- 硫酸厂安全常识培训记录课件
- 市场调研报告撰写范例及模板
- 古文教学反思与课堂改进措施
- 儿童安全教育课程资源开发
- 小学体育课程教学设计与反思报告
- 小学语文期末考试真题解析题库及参考答案
- 心理健康与幸福生活课程笔记
- 全球AI应用平台市场全景图与趋势洞察报告
- 2026.05.01施行的中华人民共和国渔业法(2025修订)课件
- 维持性血液透析患者管理
- 2025年大学大四(临床诊断学)症状鉴别诊断试题及答案
- 2026液态氧储罐泄漏事故应急处置方案
- 直肠解剖课件
- 2025年消控员初级证试题及答案
- 阿特拉斯空压机培训
- 基于PLC控制的小型钻床机械设计
- DB11T 290-2005山区生态公益林抚育技术规程
- 开放大学(原电视大学)行政管理实务期末复习资料所有单
评论
0/150
提交评论