2025届柳州铁路第一中学数学高一下期末学业水平测试模拟试题含解析_第1页
2025届柳州铁路第一中学数学高一下期末学业水平测试模拟试题含解析_第2页
2025届柳州铁路第一中学数学高一下期末学业水平测试模拟试题含解析_第3页
2025届柳州铁路第一中学数学高一下期末学业水平测试模拟试题含解析_第4页
2025届柳州铁路第一中学数学高一下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届柳州铁路第一中学数学高一下期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为()A. B. C. D.2.棱长都是1的三棱锥的表面积为()A. B. C. D.3.已知三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心,则与底面所成角的正弦值等于()A. B. C. D.4.己知,,若轴上方的点满足对任意,恒有成立,则点纵坐标的最小值为()A. B. C.1 D.25.已知函数的图象如图所示,则的解析式为()A. B.C. D.6.在等差数列中,若,则的值为()A.15 B.21 C.24 D.187.己知数列和的通项公式分別内,,若,则数列中最小项的值为()A. B.24 C.6 D.78.已知,则下列不等式成立的是()A. B. C. D.9.已知数列满足是数列的前项和,则()A. B. C. D.10.已知等比数列的前n项和为,若,,,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设,,,若,则实数的值为______12.数列满足:,,则______.13.等比数列中,,则公比____________.14.已有无穷等比数列的各项的和为1,则的取值范围为__________.15.在数列中,,,,则_____________.16.某海域中有一个小岛(如图所示),其周围3.8海里内布满暗礁(3.8海里及以外无暗礁),一大型渔船从该海域的处出发由西向东直线航行,在处望见小岛位于北偏东75°,渔船继续航行8海里到达处,此时望见小岛位于北偏东60°,若渔船不改变航向继续前进,试问渔船有没有触礁的危险?答:______.(填写“有”、“无”、“无法判断”三者之一)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,边所在的直线方程为,其中顶点的纵坐标为1,顶点的坐标为.(1)求边上的高所在的直线方程;(2)若的中点分别为,,求直线的方程.18.设数列为等比数列,且,,(1)求数列的通项公式:(2)设,数列的前项和,求证:.19.一汽车厂生产,,三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有类轿车10辆.轿车轿车轿车舒适型100150标准型300450600(1)求的值;(2)用分层抽样的方法在类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2把这8辆轿车的得分看作一个总体,从中任取一个得分数,

记这8辆轿车的得分的平均数为,定义事件,且函数没有零点,求事件发生的概率.20.已知关于,的方程:表示圆.(Ⅰ)求的取值范围;(Ⅱ)若,过点作的切线,求切线方程.21.若,其为锐角,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:如图,取中点,连接,因为是中点,则,或其补角就是异面直线所成的角,设正四面体棱长为1,则,,.故选B.考点:异面直线所成的角.【名师点睛】求异面直线所成的角的关键是通过平移使其变为相交直线所成角,但平移哪一条直线、平移到什么位置,则依赖于特殊的点的选取,选取特殊点时要尽可能地使它与题设的所有相减条件和解题目标紧密地联系起来.如已知直线上的某一点,特别是线段的中点,几何体的特殊线段.2、A【解析】

三棱锥的表面积为四个边长为1的等边三角形的面积和,故,故选A.3、B【解析】由题意不妨令棱长为,如图在底面内的射影为的中心,故由勾股定理得过作平面,则为与底面所成角,且如图作于中点与底面所成角的正弦值故答案选点睛:本题考查直线与平面所成的角,要先过点作垂线构造出线面角,然后计算出各边长度,在直角三角形中解三角形.4、D【解析】

由题意首先利用平面向量的坐标运算法则确定纵坐标的解析式,然后结合二次函数的性质确定点P纵坐标的最小值即可.【详解】设,则,,故,恒成立,即恒成立,据此可得:,故,当且仅当时等号成立.据此可得的最小值为,则的最小值为.即点纵坐标的最小值为2.故选D.【点睛】本题主要考查平面向量的坐标运算,二次函数最值的求解等知识,意在考查学生的转化能力和计算求解能力.5、D【解析】

由函数图象求出,由周期求出,由五点发作图求出的值,即可求出函数的解析式.【详解】解:根据函数的图象,可得,,所以.再根据五点法作图可得,所以,故.故选:D.【点睛】本题主要考查由函数的部分图像求解析式,属于基础题.6、D【解析】

利用等差数列的性质,将等式全部化为的形式,再计算。【详解】因为,且,则,所以.故选D【点睛】本题考查等差数列的性质,属于基础题。7、D【解析】

根据两个数列的单调性,可确定数列,也就确定了其中的最小项.【详解】由已知数列是递增数列,数列是递减数列,且计算后知,又,∴数列中最小项的值是1.故选D.【点睛】本题考查数列的单调性,数列的最值.解题时依据题意确定大小即可.本题难度一般.8、B【解析】

利用不等式的基本性质即可得出结果.【详解】因为,所以,所以,故选B【点睛】本题主要考查不等式的基本性质,属于基础题型.9、D【解析】

由已知递推关系式可以推出数列的特征,即数列和均是等比数列,利用等比数列性质求解即可.【详解】解:由已知可得,当时,由得,所以数列和均是公比为2的等比数列,首项分别为2和1,由等比数列知识可求得,,故选:D.【点睛】本题主要考查递推关系式,及等比数列的相关知识,属于中档题.10、D【解析】

根据等比数列前n项和的性质可知、、成等比数列,即可得关于的等式,化简即可得解.【详解】等比数列的前n项和为,若,,根据等比数列前n项和性质可知,、、满足:化简可得故选:D【点睛】本题考查了等比数列前n项和的性质及简单应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据题意,可以求出,根据可得出,进行数量积的坐标运算即可求出的值.【详解】故答案为:【点睛】本题考查向量垂直的坐标表示,属于基础题.12、【解析】

可通过赋值法依次进行推导,找出数列的周期,进而求解【详解】由,,当时,;当时,;当时,;当时,;当时,,当故数列从开始,以3为周期故故答案为:【点睛】本题考查数列的递推公式,能根据递推公式找出数列的规律是解题的关键,属于中档题13、【解析】

根据题意得到:,解方程即可.【详解】由题知:,解得:.故答案为:【点睛】本题主要考查等比数列的性质,熟练掌握等比数列的性质为解题的关键,属于简单题.14、【解析】

根据无穷等比数列的各项和表达式,将用公比表示,根据的范围求解的范围.【详解】因为且,又,且,则.【点睛】本题考查无穷等比数列各项和的应用,难度一般.关键是将待求量与公比之间的关系找到,然后根据的取值范围解决问题.15、5【解析】

利用递推关系式依次求值,归纳出:an+6=an,再利用数列的周期性,得解.【详解】∵a1=1,a2=5,an+2=an+1-an(n∈N*),∴a3=a2-a1=5-1=4,同理可得:a4=-1,a5=-5,a6=-4,a7=1,a8=5,…,∴an+6=an.则a2018=a6×336+2=a2=5【点睛】本题考查了递推关系、数列的周期性,考查了推理能力与计算能力.16、无【解析】

可过作的延长线的垂线,垂足为,结合角度关系可判断为等腰三角形,再通过的边角关系即可求解,判断与3.8的大小关系即可【详解】如图,过作的延长线的垂线,垂足为,在中,,,则,所以为等腰三角形。,又,所以,,所以渔船没有触礁的危险故答案为:无【点睛】本题考查三角函数在生活中的实际应用,属于基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)由题易知边上的高过,斜率为3,可得结果.(1)求得点A的坐标可得点E的坐标,易知直线EF和直线AB的斜率一样,可得方程.【详解】(1)边上的高过,因为边上的高所在的直线与所在的直线互相垂直,故其斜率为3,方程为:(2)由题点坐标为,的中点是的一条中位线,所以,,其斜率为:,所以的斜率为所以直线的方程为:化简可得:.【点睛】本题考查了直线方程的求法,主要考查直线的点斜式方程,以及化简为一般式,属于基础题.18、(1)(2)详见解析【解析】

(1)将已知条件转化为等比数列的基本量和,得到的值,从而得到数列的通项;(2)根据题意写出,然后得到数列的通项,利用列项相消法进行求和,得到其前项和,然后进行证明.【详解】设等比数列的首项为,公比为,因为,所以,所以所以;(2),所以,所以.因为,所以.【点睛】本题考查等比数列的基本量计算,裂项相消法求数列的和,属于简单题.19、(1)400;(2);(3)【解析】

(1)由分层抽样按比例可得;(2)把5个样本编号,用列举法列出任取2辆的所有基本事件,得出至少有1辆舒适型轿车的基本事件,计数后可得概率.(3)求出,确定事件所含的个数后可得概率.【详解】(1)由题意,解得;(2)C类产品中舒适型和标准型产品数量比为,因此5人样品中舒适型抽取了2辆,标准型抽取了3辆,编号为,任取2辆的基本事件有:共10个,其中至少有1辆舒适型轿车的基本事件有共7个,所求概率为.(3)由题意,满足的有共6个,函数没有零点,则,解得,再去掉,还有4个,∴所求概率为.【点睛】本题考查分层抽样,考查古典概型,解题关键是用列举法写出所有的基本事件.20、(Ⅰ);(Ⅱ)或.【解析】

(Ⅰ)根据圆的一般方程表示圆的条件,可得关于的不等式,即可求得的取值范围.(Ⅱ)将代入,可得圆的方程,化为标准方程.讨论斜率是否存在两种情况.当斜率不存在时,可直接求得直线方程;当斜率存在时,由点斜式设出直线方程,结合点到直线的距离即可求得斜率,即可得直线方程.【详解】(Ⅰ)若方程表示圆则解得故实数的取值范围为(Ⅱ)若,圆:①当过点的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论