




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届辽宁省重点六校协作体数学高一下期末复习检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图是正方体的平面展开图,则在这个正方体中:①与平行②与是异面直线③与成角
④与是异面直线以上四个命题中,正确命题的个数是()A.1 B.2 C.3 D.42.已知,则的最小值为()A.2 B.0 C.-2 D.-43.角的终边经过点且,则的值为()A.-3 B.3 C.±3 D.54.已知向量,则与().A.垂直 B.不垂直也不平行 C.平行且同向 D.平行且反向5.已知平行四边形对角线与交于点,设,,则()A. B. C. D.6.已知与之间的一组数据如表,若与的线性回归方程为,则的值为A.1 B.2 C.3 D.47.已知向量,且,则的值为()A. B. C. D.8.已知,,,则的最小值是()A. B.4 C.9 D.59.在中,,设向量与的夹角为,若,则的取值范围是()A. B. C. D.10.为了调查某工厂生产的一种产品的尺寸是否合格,现从500件产品中抽出10件进行检验,先将500件产品编号为000,001,002,…,499,在随机数表中任选一个数开始,例如选出第6行第8列的数4开始向右读取(为了便于说明,下面摘取了随机数表附表1的第6行至第8行),即第一个号码为439,则选出的第4个号码是()A.548 B.443 C.379 D.217二、填空题:本大题共6小题,每小题5分,共30分。11.已知1,,,,4成等比数列,则______.12.已知直线过点,且在两坐标轴上的截距相等,则此直线的方程为_____________.13.设,,则______.14.对任意实数,不等式恒成立,则实数的取值范围是____.15.给出以下四个结论:①过点,在两轴上的截距相等的直线方程是;②若是等差数列的前n项和,则;③在中,若,则是等腰三角形;④已知,,且,则的最大值是2.其中正确的结论是________(写出所有正确结论的番号).16.己知某产品的销售额y与广告费用x之间的关系如表:单位:万元01234单位:万元1015203035若求得其线性回归方程为,则预计当广告费用为6万元时的销售额为_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知矩形ABCD中,,,M是以CD为直径的半圆周上的任意一点(与C,D均不重合),且平面平面ABCD.(1)求证:平面平面BCM;(2)当四棱锥的体积最大时,求AM与CD所成的角.18.如图所示,在平行四边形ABCD中,若,,.(1)若,求的值;(2)若,求的值.19.已知圆C:(x-1)2(1)当l经过圆心C时,求直线l的方程;(2)当弦AB被点P平分时,写出直线l的方程20.已知函数(其中,)的最小正周期为,且图象经过点(1)求函数的解析式:(2)求函数的单调递增区间.21.某科研小组研究发现:一棵水蜜桃树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系:,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为(单位:百元).(1)求利润函数的函数关系式,并写出定义域;(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
把平面展开图还原原几何体,再由棱柱的结构特征及异面直线定义、异面直线所成角逐一核对四个命题得答案.【详解】把平面展开图还原原几何体如图:由正方体的性质可知,与异面且垂直,故①错误;与平行,故②错误;连接,则,为与所成角,连接,可知为正三角形,则,故③正确;由异面直线的定义可知,与是异面直线,故④正确.∴正确命题的个数是2个.故选:B.【点睛】本题考查棱柱的结构特征,考查异面直线定义及异面直线所成角,是中档题.2、D【解析】
根据不等式组画出可行域,借助图像得到最值.【详解】根据不等式组画出可行域得到图像:将目标函数化为,根据图像得到当目标函数过点时取得最小值,代入此点得到z=-4.故答案为:D.【点睛】利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型);(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值。3、B【解析】
根据三角函数的定义建立方程关系即可.【详解】因为角的终边经过点且,所以则解得【点睛】本题主要考查三角函数的定义的应用,应注意求出的b为正值.4、A【解析】
通过计算两个向量的数量积,然后再判断两个向量能否写成的形式,这样可以选出正确答案.【详解】因为,,所以,而不存在实数,使成立,因此与不共线,故本题选A.【点睛】本题考查了两个平面向量垂直的判断,考查了平面向量共线的判断,考查了数学运算能力.5、B【解析】
根据向量减法的三角形法则和数乘运算直接可得结果.【详解】本题正确选项:【点睛】本题考查向量的线性运算问题,涉及到向量的减法和数乘运算的应用,属于基础题.6、D【解析】
先求出样本中心点,代入回归直线方程,即可求得的值,得到答案.【详解】由题意,根据表中的数据,可得,又由回归直线方程过样本中心点,所以,解得,故选D.【点睛】本题主要考查了线性回归直线方程的应用,其中解答中熟记线性回归直线方程的基本特征是解答的关键,着重考查了推理与运算能力,属于基础题.7、B【解析】
由向量平行可构造方程求得结果.【详解】,解得:故选:【点睛】本题考查根据向量平行求解参数值的问题,关键是明确两向量平行可得.8、C【解析】
利用题设中的等式,把的表达式转化成展开后,利用基本不等式求得的最小值.【详解】∵,,,∴=,当且仅当,即时等号成立.故选:C.【点睛】本题主要考查了基本不等式求最值,注意一定,二正,三相等的原则,属于基础题.9、A【解析】
根据向量与的夹角的余弦值,得到,然后利用正弦定理,表示出,根据的范围,得到的范围.【详解】因为向量与的夹角为,且,所以,在中,由正弦定理,得,所以,因为,所以,所以.故选:A.【点睛】本题考查向量的夹角,正弦定理解三角形,求正弦函数的值域,属于简单题.10、D【解析】
利用随机数表写出每一个数字即得解.【详解】第一个号码为439,第二个号码为495,第三个号码为443,第四个号码为217.故选:D【点睛】本题主要考查随机数表,意在考查学生对该知识的理解掌握水平.二、填空题:本大题共6小题,每小题5分,共30分。11、2【解析】
因为1,,,,4成等比数列,根据等比数列的性质,可得,再利用,确定取值.【详解】因为1,,,,4成等比数列,所以,所以或,又因为,所以.故答案为:2【点睛】本题主要考查等比数列的性质,还考查运算求解的能力,属于基础题.12、或【解析】
分两种情况考虑,第一:当所求直线与两坐标轴的截距不为0时,设出该直线的方程为,把已知点坐标代入即可求出的值,得到直线的方程;第二:当所求直线与两坐标轴的截距为0时,设该直线的方程为,把已知点的坐标代入即可求出的值,得到直线的方程,综上,得到所有满足题意的直线的方程.【详解】解:①当所求的直线与两坐标轴的截距不为0时,设该直线的方程为,把代入所设的方程得:,则所求直线的方程为即;②当所求的直线与两坐标轴的截距为0时,设该直线的方程为,把代入所求的方程得:,则所求直线的方程为即.综上,所求直线的方程为:或.故答案为:或【点睛】此题考查学生会根据条件设出直线的截距式方程和点斜式方程,考查了分类讨论的数学思想,属于基础题.13、【解析】
由,根据两角差的正切公式可解得.【详解】,故答案为【点睛】本题主要考查了两角差的正切公式的应用,属于基础知识的考查.14、【解析】
分别在和两种情况下进行讨论,当时,根据二次函数图像可得不等式组,从而求得结果.【详解】①当,即时,不等式为:,恒成立,则满足题意②当,即时,不等式恒成立则需:解得:综上所述:本题正确结果:【点睛】本题考查不等式恒成立问题的求解,易错点是忽略不等式是否为一元二次不等式,造成丢根;处理一元二次不等式恒成立问题的关键是结合二次函数图象来得到不等关系,属于常考题型.15、②④【解析】
①中满足题意的直线还有,②中根据等差数列前项和的特点,得到,③中根据同角三角函数关系进行化简计算,从而进行判断,④中根据基本不等式进行判断.【详解】①中过点,在两轴上的截距相等的直线还可以过原点,即两轴上的截距都为,即直线,所以错误;②中是等差数列的前n项和,根据等差数列前项和的特点,,是一个不含常数项的二次式,从而得到,即,所以正确;③中在中,若,则可得,所以可得或,所以可得或,从而得到为直角三角形或等腰三角形,所以错误;④中因为,,且,由基本不等式,得到,所以,当且仅当,即时,等号成立.所以,即的最大值是,所以正确.故答案为:②④【点睛】本题考查截距相等的直线的特点,等差数列前项和的特点,判断三角形形状,基本不等式求积的最大值,属于中档题.16、【解析】
由已知表格中数据求得,,再由回归直线方程过样本中心点求得,得到回归方程,取即可求得答案.【详解】解:,,,.则,取,得.故答案为:【点睛】本题考查线性回归方程的求法,考查计算能力,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】
(1)只证明CM⊥平面ADM即可,即证明CM垂直于该平面内的两条相交直线,或者使用面面垂直的性质,本题的条件是平面CDM⊥平面ABCD,而M是以CD为直径的半圆周上一点,能够得到CM⊥DM,由面面垂直的性质即可证明;(2)当四棱锥M一ABCD的体积最大时,M为半圆周中点处,可得角MAB就是AM与CD所成的角,利用已知即可求解.【详解】(1)证明:CD为直径,所以CMDM,已知平面CDM平面ABCD,ADCD,AD平面CDM,所以ADCM又DMAD=DCM平面ADM又CM平面BCM,平面ADM平面BCM,(2)当M为半圆弧CD的中点时,四棱锥的体积最大,此时,过点M作MOCD于点E,平面CDM平面ABCDMO平面ABCD,即MO为四棱锥的高又底面ABCD面积为定值2,AM与CD所成的角即AM与AB所成的角,求得,三角形为正三角形,,故AM与CD所成的角为【点睛】本题主要考查异面直线成的角,面面垂直的判定定理,属于中档题.解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理.18、(1);(2)22【解析】
(1)易得,,再由即可得解;(2)由可得出,再由,可得:,即,即可得到的值.【详解】(1)由向量的加法法则得:,,,因为,所以;(2),∴,∴,即,∴.【点睛】本题平面向量的应用,考查向量的加法法则,考查向量数量积的应用,考查逻辑思维能力和运算能力,属于常考题.19、(1);(2)【解析】(1)已知圆C:(x-1)2(2)当弦AB被点P平分时,l⊥PC,直线l的方程为y-2=-120、(1);(2),.【解析】
(1)根据最小正周期可求得;代入点,结合的范围可求得,从而得到函数解析式;(2)令,解出的范围即为所求的单调递增区间.【详解】(1)最小正周期过点,,解得:,的解析式为:(2)由,得:,的单调递增区间为:,【点睛】本题考查根据三角函数性质求解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中外乐器试题及答案大全
- 益阳市重点中学2025届高二化学第二学期期末监测模拟试题含解析
- 浙江省杭州地区2024-2025学年高二下物理期末学业质量监测试题含解析
- 高效车库租赁合同范本:涵盖车位租赁与增值服务
- 茶具行业展会举办与赞助合同
- 鸡类产品养殖基地与包装企业采购合同
- 金融服务代理授权委托合同样本
- 读一本书的心得体会(32篇)
- 天津市老年城建设项目可行性研究报告
- 2024年高邮市卫健系统事业单位招聘专业技术人员笔试真题
- 数字化电力系统转型-洞察阐释
- 2025中国甲烷大会:2024-2025全球甲烷控排进展报告
- GB/T 196-2025普通螺纹基本尺寸
- 中华人民共和国农村集体经济组织法
- MOOC 中国电影经典影片鉴赏-北京师范大学 中国大学慕课答案
- 血橙生产技术规程
- 医院小型压力蒸汽灭菌器的使用及管理
- 中药学电子版教材
- 【课件】彼得兔的故事
- 股票软件“指南针”指标说明
- 人工授精实验室制度和操作规程
评论
0/150
提交评论