安徽省合肥九中2025届高一下数学期末教学质量检测模拟试题含解析_第1页
安徽省合肥九中2025届高一下数学期末教学质量检测模拟试题含解析_第2页
安徽省合肥九中2025届高一下数学期末教学质量检测模拟试题含解析_第3页
安徽省合肥九中2025届高一下数学期末教学质量检测模拟试题含解析_第4页
安徽省合肥九中2025届高一下数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省合肥九中2025届高一下数学期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在长方体中,,,则异面直线与所成角的余弦值为()A. B.C. D.2.已知随机事件中,与互斥,与对立,且,则()A.0.3 B.0.6 C.0.7 D.0.93.已知,且,则的最小值为()A.8 B.12 C.16 D.204.我国古代数学名著九章算术记载:“刍甍者,下有袤有广,而上有袤无丈刍,草也;甍,屋盖也”翻译为:“底面有长有宽为矩形,顶部只有长没有宽为一条棱刍甍字面意思为茅草屋顶”如图,为一刍甍的三视图,其中正视图为等腰梯形,侧视图为等腰三角形则它的体积为A. B.160 C. D.645.直线与圆的位置关系是()A.相切 B.相离C.相交但不过圆心 D.相交且过圆心6.已知a,b为不同的直线,为平面,则下列命题中错误的是()A.若,,则 B.若,,则C.若,,则 D.若,,则7.在中,分别是角的对边,若,且,则的值为()A.2 B. C. D.48.下列命题中不正确的是()A.平面∥平面,一条直线平行于平面,则一定平行于平面B.平面∥平面,则内的任意一条直线都平行于平面C.一个三角形有两条边所在的直线分别平行于一个平面,那么该三角形所在的平面与这个平面平行D.分别在两个平行平面内的两条直线只能是平行直线或异面直线9.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,|φ|)的部分图象如图所示,则f(x)的解析式为()A.f(x)=sin(x)﹣1 B.f(x)=2sin(x)﹣1C.f(x)=2sin(x)﹣1 D.f(x)=2sin(2x)+110.若长方体三个面的面积分别为2,3,6,则此长方体的外接球的表面积等于()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知三棱锥(如图所示),平面,,,,则此三棱锥的外接球的表面积为______.12.分形几何学是美籍法国数学家伯努瓦.B.曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,下图是按照一定的分形规律生长成一个数形图,则第13行的实心圆点的个数是________13.下列命题:①函数的最小正周期是;②在直角坐标系中,点,将向量绕点逆时针旋转得到向量,则点的坐标是;③在同一直角坐标系中,函数的图象和函数的图象有两个公共点;④函数在上是增函数.其中,正确的命题是________(填正确命题的序号).14.已知,则的值为.15.设的内角、、的对边分别为、、,且满足.则______.16.在锐角△中,,,,则________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在中,点在边上,,,.(1)求边的长;(2)若的面积是,求的值.18.正项数列的前项和为,且.(Ⅰ)试求数列的通项公式;(Ⅱ)设,求的前项和为.(Ⅲ)在(Ⅱ)的条件下,若对一切恒成立,求实数的取值范围.19.如图,三棱柱中,,D为AB上一点,且平面.(1)求证:;(2)若四边形是矩形,且平面平面ABC,直线与平面ABC所成角的正切值等于2,,,求三楼柱的体积.20.已知数列的前项和为,点在直线上.(1)求数列的通项公式;(2)设,求数列的前项和.21.已知数列是等差数列,,.(1)从第几项开始;(2)求数列前n项和的最大值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

画出长方体,将平移至,则,则即为异面直线与所成角,由余弦定理即可求解.【详解】根据题意,画出长方体如下图所示:将平移至,则即为异面直线与所成角,,由余弦定理可得故选:C【点睛】本题考查了长方体中异面直线的夹角求法,余弦定理在解三角形中的应用,属于基础题.2、C【解析】

由对立事件概率关系得到B发生的概率,再由互斥事件的概率计算公式求P(A+B).【详解】因为,事件B与C对立,所以,又,A与B互斥,所以,故选C.【点睛】本题考查互斥事件的概率,能利用对立事件概率之和为1进行计算,属于基本题.3、C【解析】

由题意可得,则,展开后利用基本不等式,即可求出结果.【详解】因为,且,即为,则,当且仅当,即取得等号,则的最小值为.故选:C.【点睛】本题考查基本不等式的应用,注意等号成立的条件,考查运算能力,属于中档题.4、A【解析】

分析:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据可得其体积.详解:由三视图可知该刍甍是一个组合体,它由成一个直三棱柱和两个全等的四棱锥组成,根据三视图中的数据,求出棱锥与棱柱的体积相加即可,,故选A.点睛:本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.5、C【解析】圆心到直线的距离,据此可知直线与圆的位置关系为相交但不过圆心.本题选择C选项.6、D【解析】

根据线面垂直与平行的性质与判定分析或举出反例即可.【详解】对A,根据线线平行与线面垂直的性质可知A正确.对B,根据线线平行与线面垂直的性质可知B正确.对C,根据线面垂直的性质知C正确.对D,当,时,也有可能.故D错误.故选:D【点睛】本题主要考查了空间中平行垂直的判定与性质,属于中档题.7、A【解析】

由正弦定理,化简求得,解得,再由余弦定理,求得,即可求解,得到答案.【详解】在中,因为,且,由正弦定理得,因为,则,所以,即,解得,由余弦定理得,即,解得,故选A.【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.8、A【解析】

逐一考查所给的选项是否正确即可.【详解】逐一考查所给的选项:A.平面∥平面,一条直线平行于平面,可能a在平面内或与相交,不一定平行于平面,题中说法错误;B.由面面平行的定义可知:若平面∥平面,则内的任意一条直线都平行于平面,题中说法正确;C.由面面平行的判定定理可得:若一个三角形有两条边所在的直线分别平行于一个平面,那么该三角形所在的平面与这个平面平行,题中说法正确;D.分别在两个平行平面内的两条直线只能是平行直线或异面直线,不可能相交,题中说法正确.本题选择A选项.【点睛】本题考查了空间几何体的线面位置关系判定与证明:(1)对于异面直线的判定要熟记异面直线的概念:把既不平行也不相交的两条直线称为异面直线;(2)对于线面位置关系的判定中,熟记线面平行与垂直、面面平行与垂直的定理是关键.9、D【解析】

由已知列式求得的值,再由周期求得的值,利用五点作图的第二个点求得的值,即可得到答案.【详解】由题意,根据三角函数的图象,可得,解得,又由,解得,则,又由五点作图的第二个点可得:,解得,所以函数的解析式为,故选D.【点睛】本题主要考查了由的部分图象求解函数的解析式,其中解答中熟记三角函数的五点作图法,以及三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于中档试题.10、C【解析】

设长方体过一个顶点的三条棱长分别为,,,由已知面积求得,,的值,得到长方体对角线长,进一步得到外接球的半径,则答案可求.【详解】设长方体过一个顶点的三条棱长分别为,,,则,解得,,.长方体的对角线长为.则长方体的外接球的半径为,此长方体的外接球的表面积等于.故选:C.【点睛】本题考查长方体外接球表面积的求法,考查空间想象能力和运算求解能力,求解时注意长方体的对角线长为长方体外接球的直径.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由于图形特殊,可将图形补成长方体,从而求长方体的外接球表面积即为所求.【详解】,,,,平面,将三棱锥补形为如图的长方体,则长方体的对角线,则【点睛】本题主要考查外接球的相关计算,将图形补成长方体是解决本题的关键,意在考查学生的划归能力及空间想象能力.12、【解析】

观察图像可知每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.再利用规律找到行与行之间的递推关系即可.【详解】由图像可得每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.故从第三行开始,每行的实心圆点数均为前两行之和.即.故第1到第13行中实心圆点的个数分别为:.故答案为:【点睛】本题主要考查了递推数列的实际运用,需要观察求得行与行之间的实心圆点的递推关系,属于中等题型.13、①②④【解析】

由余弦函数的周期公式可判断①;由任意角的三角函数定义可判断②;由余弦函数和一次函数的图象可判断③;由诱导公式和余弦函数的单调性可判断④.【详解】函数y=cos(﹣2x)即y=cos2x的最小正周期是π,故①正确;在直角坐标系xOy中,点P(a,b),将向量绕点O逆时针旋转90°得到向量,设a=rcosα,b=rsinα,可得rcos(90°+α)=﹣rsinα=﹣b,rsin(90°+α)=rcosα=a,则点Q的坐标是(﹣b,a),故②正确;在同一直角坐标系中,函数y=cosx的图象和函数y=x的图象有一个公共点,故③错误;函数y=sin(x)即y=﹣cosx在[0,π]上是增函数,故④正确.故答案为①②④.【点睛】本题考查余弦函数的图象和性质,主要是周期性和单调性,考查数形结合思想和化简运算能力,属于基础题.14、【解析】

利用商数关系式化简即可.【详解】,故填.【点睛】利用同角的三角函数的基本关系式可以化简一些代数式,常见的方法有:(1)弦切互化法:即把含有正弦和余弦的代数式化成关于正切的代数式,也可以把含有正切的代数式化为关于余弦和正弦的代数式;(2)“1”的代换法:有时可以把看成.15、4【解析】

解法1有题设及余弦定理得.故.解法2如图4,过点作,垂足为.则,.由题设得.又,联立解得,.故.解法3由射影定理得.又,与上式联立解得,.故.16、【解析】

由正弦定理,可得,求得,即可求解,得到答案.【详解】由正弦定理,可得,所以,又由△为锐角三角形,所以.故答案为:.【点睛】本题主要考查了正弦定理得应用,其中解答中熟记正弦定理,准确计算是解答的关键,着重考查了计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)2;(2)【解析】

(1)设,利用余弦定理列方程可得:,解方程即可(2)利用(1)中结果即可判断为等边三角形,即可求得中边上的高为,再利用的面积是即可求得:,结合余弦定理可得:,再利用正弦定理可得:,问题得解【详解】(1)在中,设,则,由余弦定理得:即:解之得:,即边的长为2.(2)由(1)得为等边三角形,作于,则∴,故在中,由余弦定理得:∴在中,由正弦定理得:,即:∴∴【点睛】本题主要考查了利用正、余弦定理解三角形,还考查了三角形面积公式的应用及计算能力,属于中档题18、(Ⅰ);(Ⅱ);(Ⅲ).【解析】

(Ⅰ)将所给条件式子两边同时平方,利用递推法可得的表达式,由两式相减,变形即可证明数列为等差数列,进而结合首项与公差求得的通项公式.(Ⅱ)由(Ⅰ)中可求得.将与代入即可求得数列的通项公式,利用裂项法即可求得前项和.(Ⅲ)先求得的取值范围,结合不等式,即可求得的取值范围.【详解】(Ⅰ)因为正项数列的前项和为,且化简可得由递推公式可得两式相减可得,变形可得即,由正项等比数列可得所以而当时,解得所以数列是以为首项,以为公差的等差数列因而(Ⅱ)由(Ⅰ)可知则代入中可得所以(Ⅲ)由(Ⅱ)可知则,所以数列为单调递增数列,则且当时,,即所以因为对一切的恒成立则满足,解不等式组可得即实数的取值范围为【点睛】本题考查了等差数列通项公式与求和公式的应用,裂项求和法的应用,数列的单调性与不等式关系,综合性强,属于中档题.19、(1)见详解;(2)【解析】

(1)连接交于点,连接,利用线面平行的性质定理可得,从而可得为的中点,进而可证出(2)利用面面垂直的性质定理可得平面,从而

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论