2024九年级数学上册第25章图形的相似25.4相似三角形的判定3教案新版冀教版_第1页
2024九年级数学上册第25章图形的相似25.4相似三角形的判定3教案新版冀教版_第2页
2024九年级数学上册第25章图形的相似25.4相似三角形的判定3教案新版冀教版_第3页
2024九年级数学上册第25章图形的相似25.4相似三角形的判定3教案新版冀教版_第4页
2024九年级数学上册第25章图形的相似25.4相似三角形的判定3教案新版冀教版_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Page-1-25.4相像三角形的判定(3)教学目标【学问与实力】1.了解三边成比例的两个三角形相像判定定理的证明过程.2.能运用相像三角形的判定定理证明三角形相像.【过程与方法】1.经验类比、猜想、探究、归纳、应用等数学活动,提高学生分析问题、解决问题的实力.2.通过应用相像三角形的判定方法和性质解决简洁问题,培育学生的应用意识.【情感看法价值观】1.探究相像三角形的判定定理的证明,培育学生合情推理及演绎推理实力,提高逻辑思维实力.2.在相像三角形判定定理的探究过程中,培育学生大胆动手、勇于探究和勤于思索的精神,同时体验胜利带来的欢乐.3.在探究活动中通过小组合作沟通,培育学生共同探究的合作意识及探究实践的良好习惯.教学重难点【教学重点】能运用三边成比例的两个三角形相像证明三角形相像.【教学难点】相像三角形判定定理的证明过程.课前打算多媒体课件教学过程一、新课导入:导入一:复习提问:(1)相像三角形的判定定理1和2的内容是什么?(2)用什么方法证明的判定定理1和2?【师生活动】学生回答问题,对学生出现的问题老师刚好订正,并强调易错点.导入二:学校为了改善环境,在一片空地上修建一块三角形草地,图纸如图(1)所示,完工后小明想要确定图(2)的草坪是否和图纸中的三角形相像,你能帮帮他吗?[导入语]依据前边的学习,我们推断三角形相像须要两个对应角相等或两边对应成比例且夹角相等,而图纸中的三角形没有角的大小,只有边的大小,我们只测量三角形草坪边的大小,能否判定三角形相像就是本节课的学习任务.[设计意图]通过复习相像三角形的判定方法及定理证明思路,为本节课用类比方法探究另一个判定定理做好铺垫;以生活实例为情境导入新课,让学生感受数学来源于生活,激发学生学习的爱好.二、新知构建:[过渡语]让我们一起探究,依据三角形三边之间的关系,如何判定两个三角形相像.一起探究三条边对应成比例的两个三角形相像思路一动手操作:(1)同桌分别画一个ΔABC和ΔA'B'C',使AB=1.5cm,AC=2.5cm,BC=2cm;A'B'=3cm,A'C'=5cm,B'C'=4cm.(2)比较ΔABC与ΔA'B'C'各个角,它们对应相等吗?这两个三角形相像吗?【学生活动】学生动手画图,然后通过测量三角形的内角,依据相像三角形的判定定理判定三角形相像.(3)假如一个三角形的三边长分别是另一个三角形三边长的k倍,那么这两个三角形是否相像?【学生活动】学生动手操作,然后测量三角形的角度,依据定义判定两个三角形相像.(4)猜想:三角形三边对应成比例,两个三角形相像.你能证明这个结论吗?【课件展示】已知:如图所示,在ΔABC和ΔA'B'C'中,ABA求证:ΔABC∽ΔA'B'C'.老师引导分析:(1)上节课证明两个三角形相像,如何把两个三角形转化到一个三角形内,利用平行线证明三角形相像?(2)类比上节课的证明思路,尝试证明.【学生活动】学生独立完成证明过程,小组内沟通答案,学生展示证明过程,老师点评,并规范证明格式.【课件展示】证明:如图所示,在ΔABC的边AB上截取AE=A'B',过点E作EF∥BC,交AC于点F,则ΔABC∽ΔAEF,ABAE在ΔA'B'C'和ΔAEF中,∵ABA'B'=AC∴ABAE又∵ABAE∴AF=A'C',EF=B'C'.∴ΔAEF≌ΔA'B'C'.∴ΔABC∽ΔA'B'C'.(3)用语言叙述以上得到的结论,并用几何语言表示.【师生活动】学生独立思索并回答,老师点评,师生共同归纳相像三角形的判定定理.【课件展示】相像三角形的判定定理:三条边对应成比例的两个三角形相像.几何语言:如图所示,若ABA则ΔABC∽ΔA'B'C'.思路二(1)猜想:类比SSS证明两个三角形全等,猜想:三边对应成比例的两个三角形相像.(2)证明你的猜想.【课件展示】已知:如图所示,在ΔABC和ΔA'B'C'中,ABA求证:ΔABC∽ΔA'B'C'.老师引导:类比上节课证明相像三角形的判定定理的证明思路完成证明.【师生活动】学生独立完成证明过程,小组内沟通答案,小组代表板书,老师巡察过程中帮助有困难的学生,对学生的展示点评,规范学生书写证明过程.(证明过程同思路一)(3)归纳总结:相像三角形的判定定理及几何语言表示.【课件展示】相像三角形的判定定理:三条边对应成比例的两个三角形相像.几何语言:如图所示,若ABA则ΔABC∽ΔA'B'C'.[设计意图]通过动手操作、猜想、证明、归纳等数学活动,获得判定三角形相像的条件,体会数学中的类比思想,培育学生分析问题的实力,同时通过规范证明过程,培育学生严谨的数学精神.例题讲解[过渡语]我们学习了相像三角形的判定方法,让我们一起完成下面的证明.【课件展示】(教材80页例3)已知:如图所示,在RtΔABC与RtΔA'B'C'中,∠B=∠B'=90°,ABA'求证:RtΔABC∽RtΔA'B'C'.老师引导分析:由于三边对应成比例的两个三角形相像,而已知条件中有两边对应成比例,所以只需证明另一对直角边成比例即可.在直角三角形中三边之间的关系满意勾股定理,所以可设ABA'B'=ACA'C'=k,利用勾股定理分别求出BC,【学生活动】学生在老师的引导下独立完成,小组内沟通答案,老师在巡察过程中帮助有困难的学生,学生展示后老师点评.【课件展示】证明:设ABA'B'=ACA'C'=依据勾股定理,得BC=AC2-AB∴ABA∴RtΔABC∽RtΔA'B'C'.追加提问:1.你能归纳判定两个直角三角形相像的条件吗?(一个锐角相等或两边对应成比例)2.我们可以用几种方法证明三角形相像?(平行线法、两角对应相等、两边对应成比例且夹角相等,三边对应成比例)【师生活动】小组内合作沟通,师生共同归纳结论.【课件展示】直角边和斜边对应成比例的两个直角三角形相像.[设计意图]学生在老师的引导下思索后合作沟通,类比全等直角三角形的判定,探究出相像直角三角形的判定方法,学生亲身经验学问的形成过程,体会数学的严谨性,提高分析问题的实力,使学生在探究中提升数学思维.[学问拓展]1.当已知条件中有三边时,可考虑用“三边对应成比例的两个三角形相像”证明三角形相像.2.在应用本课时所学的相像三角形的判定定理时,肯定要留意先求两个三角形中大边与大边,中间边与中间边,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论