版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省无锡锡东片2025届九年级数学第一学期期末质量跟踪监视试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.已知函数y=ax2-2ax-1(a是常数且a≠0),下列结论正确的是()A.当a=1时,函数图像过点(-1,1)B.当a=-2时,函数图像与x轴没有交点C.当a,则当x1时,y随x的增大而减小D.当a,则当x1时,y随x的增大而增大2.如图,一次函数的图象与反比例函数(为常数且)的图象都经过,结合图象,则不等式的解集是()A. B.C.或 D.或3.如图,△ABC中,点D是AB的中点,点E是AC边上的动点,若△ADE与△ABC相似,则下列结论一定成立的是()A.E为AC的中点 B.DE是中位线或AD·AC=AE·ABC.∠ADE=∠C D.DE∥BC或∠BDE+∠C=180°4.如图,中,中线AD,BE相交于点F,,交于AD于点G,下列说法①;②;③与面积相等;④与四边形DCEF面积相等.结论正确的是()A.①③④ B.②③④ C.①②③ D.①②④5.如图,在圆内接四边形ABCD中,∠A:∠C=1:2,则∠A的度数等于()A.30° B.45° C.60° D.80°6.某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中不正确的是()A.团队平均日工资不变 B.团队日工资的方差不变C.团队日工资的中位数不变 D.团队日工资的极差不变7.下列图形中,既是轴对称图形,又是中心对称图形的个数有()A.1个 B.2个 C.3个 D.4个8.如图,周长为定值的平行四边形中,,设的长为,周长为16,平行四边形的面积为,与的函数关系的图象大致如图所示,当时,的值为()A.1或7 B.2或6 C.3或5 D.49.已知反比例函数图象如图所示,下列说法正确的是()A.B.随的增大而减小C.若矩形面积为2,则D.若图象上两个点的坐标分别是,,则10.在Rt△ABC中,∠C=90°,AC=9,BC=12,则其外接圆的半径为()A.15 B.7.5 C.6 D.3二、填空题(每小题3分,共24分)11.反比例函数在第一象限内的图象如图,点是图象上一点,垂直轴于点,如果的面积为4,那么的值是__________.12.某商场在“元旦”期间推出购物摸奖活动,摸奖箱内有除颜色以外完全相同的红色、白色乒乓球各两个.顾客摸奖时,一次摸出两个球,如果两个球的颜色相同就得奖,颜色不同则不得奖.那么顾客摸奖一次,得奖的概率是_______.13.如图,将放在边长为1的小正方形组成的网格中,若点A,O,B都在格点上,则___________________.14.点(5,﹣)关于原点对称的点的坐标为__________.15.已知a+b=0目a≠0,则=_____.16.如图,直线l经过⊙O的圆心O,与⊙O交于A、B两点,点C在⊙O上,∠AOC=30°,点P是直线l上的一个动点(与圆心O不重合),直线CP与⊙O相交于点Q,且PQ=OQ,则满足条件的∠OCP的大小为_______.17.如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_______米(结果保留根号).18.如图,在中,,是边上的中线,,则的长是__________.三、解答题(共66分)19.(10分)如图1,在平面直角坐标系中,已知的半径为5,圆心的坐标为,交轴于点,交轴于,两点,点是上的一点(不与点、、重合),连结并延长,连结,,.
(1)求点的坐标;(2)当点在上时.①求证:;②如图2,在上取一点,使,连结.求证:;(3)如图3,当点在上运动的过程中,试探究的值是否发生变化?若不变,请直接写出该定值;若变化,请说明理由.20.(6分)如图1,矩形ABCD中,AD=2,AB=3,点E,F分别在边AB,BC上,且BF=FC,连接DE,EF,并以DE,EF为边作▱DEFG.(1)连接DF,求DF的长度;(2)求▱DEFG周长的最小值;(3)当▱DEFG为正方形时(如图2),连接BG,分别交EF,CD于点P、Q,求BP:QG的值.21.(6分)2019年12月27日,我国成功发射了“长征五号”遥三运载火箭.如图,“长征五号”运载火箭从地面处垂直向上发射,当火箭到达处时,从位于地面处的雷达站测得此时仰角,当火箭继续升空到达处时,从位于地面处的雷达站测得此时仰角,已知,.(1)求的长;(2)若“长征五号”运载火箭在处进行“程序转弯”,且,求雷达站到其正上方点的距离.22.(8分)如图,在直角坐标系中,矩形的顶点、分别在轴和轴正半轴上,点的坐标是,点是边上一动点(不与点、点重合),连结、,过点作射线交的延长线于点,交边于点,且,令,.(1)当为何值时,?(2)求与的函数关系式,并写出的取值范围;(3)在点的运动过程中,是否存在,使的面积与的面积之和等于的面积.若存在,请求的值;若不存在,请说明理由.23.(8分)如图,把Rt△ABC绕点A.逆时针旋转40°,得到在Rt△ABʹCʹ,点Cʹ恰好落在边AB上,连接BBʹ,求∠BBʹCʹ的度数.24.(8分)如图,在△ABC中,CD平分∠ACB,DE∥BC,若,且AC=14,求DE的长.25.(10分)如图,抛物线经过A(﹣1,0),B(3,0)两点,交y轴于点C,点D为抛物线的顶点,连接BD,点H为BD的中点.请解答下列问题:(1)求抛物线的解析式及顶点D的坐标;(2)在y轴上找一点P,使PD+PH的值最小,则PD+PH的最小值为26.(10分)某班“数学兴趣小组”对函数的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量的取值范围是全体实数,与的几组对应值列表如下:其中,.……0123…………3003……(2)根据表中数据,在如图所示的平面直角坐标系中描点,已画出了函数图象的一部分,请画出该函数图象的另一部分;(3)观察函数图象,写出一条函数的性质:;(4)观察函数图象发现:若关于的方程有4个实数根,则的取值范围是.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据二次函数的图象与性质逐项分析即可.【详解】y=ax2-2ax-1(a是常数且a≠0)A、当a=1时,y=x2−2x−1,令x=−1,则y=2,此项错误;B、当a=−2时,y=2x2+4x−1,对应的二次方程的根的判别式Δ=42−4×2×(−1)=24>0,则该函数的图象与x轴有两个不同的交点,此项错误;C、当a>0,y=ax2−2ax−1=a(x-1)2-a+1,则x≥1时,y随x的增大而增大,此项错误;D、当a<0时,y=ax2−2ax−1=a(x-1)2-a+1,则x≤1时,y随x的增大而增大,此项正确;故答案为:D.【点睛】本题考查了二次函数的图象与性质,掌握熟记图象特征与性质是解题关键.错因分析:较难题.失分原因可能是:①不会判断抛物线与x轴的交点情况;②不能画出拋物线的大致图象来判断增减性.2、C【分析】根据一次函数图象在反比例函数图象上方的的取值范围便是不等式的解集.【详解】解:由函数图象可知,当一次函数的图象在反比例函数(为常数且)的图象上方时,的取值范围是:或,∴不等式的解集是或.故选C.【点睛】本题是一次函数图象与反比例函数图象的交点问题:主要考查了由函数图象求不等式的解集.利用数形结合是解题的关键.3、D【分析】如图,分两种情况分析:由△ADE与△ABC相似,得,∠ADE=∠B或∠ADE=∠C,故DE∥BC或∠BDE+∠C=180°.【详解】因为,△ADE与△ABC相似,所以,∠ADE=∠B或∠ADE=∠C所以,DE∥BC或∠BDE+∠C=∠BDE+∠ADE=180°故选D【点睛】本题考核知识点:相似性质.解题关键点:理解相似三角形性质.4、D【分析】为BC,AC中点,可得由于可得;可证故①正确.②由于则可证,故②正确.设,可得可判断③错,④正确.【详解】解:①∵为BC,AC中点,;故①正确.②,故②正确.③④设,故③错,④正确.【点睛】本题考查了平行线段成比例,解题的关键是掌握平行线段成比例以及面积与比值的关系.5、C【分析】设∠A、∠C分别为x、2x,然后根据圆的内接四边形的性质列出方程即可求出结论.【详解】解:设∠A、∠C分别为x、2x,∵四边形ABCD是圆内接四边形,∴x+2x=180°,解得,x=60°,即∠A=60°,故选:C.【点睛】此题考查的是圆的内接四边形的性质,掌握圆的内接四边形的性质是解决此题的关键.6、B【解析】根据平均数、方差、中位数和众数的定义分别对每一项进行分析,即可得出答案.【详解】解:调整前的平均数是:=280;调整后的平均数是:=280;故A正确;调整前的方差是:=;调整后的方差是:=;故B错误;调整前:把这些数从小到大排列为:260,260,260,260,280,280,280,280,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,调整后:把这些数从小到大排列为:260,260,260,260,260,280,280,300,300,300,300,300;最中间两个数的平均数是:280,则中位数是280,故C正确;调整前的极差是40,调整后的极差也是40,则极差不变,故D正确.故选B.【点睛】此题考查了平均数、方差、中位数和极差的概念,掌握各个数据的计算方法是关键.7、B【分析】根据轴对称图形与中心对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.【详解】(1)是轴对称图形,不是中心对称图形.不符合题意;(2)不是轴对称图形,是中心对称图形,不符合题意;(3)是轴对称图形,也是中心对称图形,符合题意;(4)是轴对称图形,也是中心对称图形,符合题意;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.8、B【分析】过点A作AE⊥BC于点E,构建直角△ABE,通过解该直角三角形求得AE的长度,然后利用平行四边形的面积公式列出函数关系式,即可求解.【详解】如图,过点A作AE⊥BC于点E,∵∠B=60°,边AB的长为x,∴AE=AB•sin60°=∵平行四边形ABCD的周长为16,∴BC=(16−2x)=8−x,∴y=BC•AE=(8−x)×(0≤x≤8).当时,(8−x)×=解得x1=2,x2=6故选B.【点睛】考查了动点问题的函数图象.掌握平行四边形的周长公式和解直角三角形求得AD、BE的长度是解题的关键.9、D【分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【详解】解:A.反比例函数的图象位于第二象限,∴k﹤0故A错误;
B.在第二象限内随的增大而增大,故B错误;
C.矩形面积为2,∵k﹤0,∴k=-2,故C错误;
D.∵图象上两个点的坐标分别是,,在第二象限内随的增大而增大,∴,故D正确,
故选D.【点睛】本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键.10、B【详解】解:∵∠C=90°,∴AB2=AC2+BC2,而AC=9,BC=12,∴AB==1.又∵AB是Rt△ABC的外接圆的直径,∴其外接圆的半径为7.2.故选B.二、填空题(每小题3分,共24分)11、1【分析】利用反比例函数k的几何意义得到|k|=4,然后利用反比例函数的性质确定k的值.【详解】解:∵△MOP的面积为4,∴|k|=4,∴|k|=1,∵反比例函数图象的一支在第一象限,∴k>0,∴k=1,故答案为:1.【点睛】本题考查了比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.也考查了反比例函数的性质.12、【分析】根据题意列举出所有情况,并得出两球颜色相同的情况,运用概率公式进行求解.【详解】解:一次摸出两个球的所有情况有(红1,红2),(红1,白1),(红1,白2),(红2,白1),(红2,白2),(白1,白2)6种,其中两球颜色相同的有2种.所以得奖的概率是.故答案为:.【点睛】本题考查概率的概念和求法,熟练掌握概率的概念即概率=所求情况数与总情况数之比和求法是解题的关键.13、2【分析】利用网格特征,将∠AOB放到Rt△AOD中,根据正切函数的定理即可求出tan∠AOB的值.【详解】如图,将∠AOB放到Rt△AOD中,∵AD=2,OD=1∴tan∠AOB=故答案为:2.【点睛】本题考查在网格图中求正切值,利用网格的特征将将∠AOB放到直角三角形中是解题的关键.14、(-5,)【分析】让两点的横纵坐标均互为相反数可得所求的坐标.【详解】∵两点关于原点对称,∴横坐标为-5,纵坐标为,故点P(5,−)关于原点对称的点的坐标是:(-5,).故答案为:(-5,).【点睛】此题主要考查了关于原点对称的坐标的特点:两点的横坐标互为相反数;纵坐标互为相反数.15、1【分析】先将分式变形,然后将代入即可.【详解】解:,故答案为1【点睛】本题考查了分式,熟练将式子进行变形是解题的关键.16、40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°17、一4【分析】分析:利用特殊三角函数值,解直角三角形,AM=MD,再用正切函数,利用MB求CM,作差可求DC.【详解】因为∠MAD=45°,AM=4,所以MD=4,因为AB=8,所以MB=12,因为∠MBC=30°,所以CM=MBtan30°=4.所以CD=4-4.【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的相关定义以及变形是解题的关键.18、10【分析】根据直角三角形斜边中线等于斜边的一半直接求解即可.【详解】解:∵在中,,是边上的中线∴∴AB=2CD=10故答案为:10【点睛】本题考查直角三角形斜边中线等于斜边的一半,掌握直角三角形的性质是本题的解题关键.三、解答题(共66分)19、(1)(0,4);(2)①详见解析;②详见解析;(3)不变,为.【分析】(1)连结,在中,为圆的半径5,,由勾股定理得(2)①根据圆的基本性质及圆周角定理即可证明;②根据等腰三角形的性质得到,根据三角形的外角定理得到,由①证明得到,即可根据相似三角形的判定进行求解;(3)分别求出点C在B点时和点C为直径AC时,的值,即可比较求解.【详解】(1)连结,在中,=5,,∴∴A(0,4).(2)连结,故,则∵∠ABD+∠ACD=180°,∠HCD+∠ACD=180°,∴∵与是弧所对的圆周角∴=又∴即②∵∴∵,且由(2)得∴∴在与中∴(3)①点C在B点时,如图,AC=2AO=8,BC=0,CD=BD=∴==;当点C为直径AC与圆的交点时,如图∴AC=2r=10∵O,M分别是AB、AC中点,∴BC=2OM=6,∴C(6,-4)∵D(8,0)∴CD=∴==故的值不变,为.【点睛】此题主要考查圆的综合题,解题的关键是熟知圆周角定理、勾股定理及相似三角形的判定.20、(1);(2)6;(3)或.【分析】(1)平行四边形DEFG对角线DF的长就是Rt△DCF的斜边的长,由勾股定理求解;(2)平行四边形DEFG周长的最小值就是求邻边2(DE+EF)最小值,DE+EF的最小值就是以AB为对称轴,作点F的对称点M,连接DM交AB于点N,点E与N点重合时即DE+EF=DM时有最小值,在Rt△DMC中由勾股定理求DM的长;(3)平行四边形DEFG为矩形时有两种情况,一是一般矩形,二是正方形,分类用全等三角形判定与性质,等腰直角三角形判定与性质,三角形相似的判定与性质和勾股定理求解.【详解】解:(1)如图1所示:∵四边形ABCD是矩形,∠C=90°,AD=BC,AB=DC,∵BF=FC,AD=2;∴FC=1,∵AB=3;∴DC=3,在Rt△DCF中,由勾股定理得,∴DF===;(2)如图2所示:作点F关直线AB的对称点M,连接DM交AB于点N,连接NF,ME,点E在AB上是一个动点,①当点E不与点N重合时点M、E、D可构成一个三角形,∴ME+DE>MD,②当点E与点N重合时点M、E(N)、D在同一条直线上,∴ME+DE=MD由①和②DE+EF的值最小时就是点E与点N重合时,∵MB=BF,∴MB=1,∴MC=3,又∵DC=3,∴△MCD是等腰直角三角形,∴MD===3,∴NF+DN=MD=3,∴l平行四边形DEFG=2(NF+DF)=6;(3)设AE=x,则BE=3﹣x,∵平行四边形DEFG为矩形,∴∠DEF=90°,∵∠AED+∠BEF=90°,∠BEF+∠BFE=90°,∴∠AED=∠BFE,又∵∠A=∠EBF=90°,∴△DAE∽△EBF,∴=,∴=,解得:x=1,或x=2①当AE=1,BE=2时,过点B作BH⊥EF,如图3(甲)所示:∵平行四边形DEFG为矩形,∴∠A=∠ABF=90°,又∵BF=1,AD=2,∴在△ADE和△BEF中,,∴△ADE≌△BEF中(SAS),∴DE=EF,∴矩形DEFG是正方形;在Rt△EBF中,由勾股定理得:EF===,∴BH==,又∵△BEF~△HBF,∴=,HF===,在△BPH和△GPF中有:∠BPH=∠GPF,∠BHP=∠GFP,∴△BPH∽△GPF,∴===,∴PF=•HF=,又∵EP+PF=EF,∴EP=﹣=,又∵AB∥BC,EF∥DG,∴∠EBP=∠DQG,∠EPB=∠DGQ,∴△EBP∽△DQG(AA),∴===,②当AE=2,BE=1时,过点G作GH⊥DC,如图3(乙)所示:∵▱DEFG为矩形,∴∠A=∠EBF=90°,∵AD=AE=2,BE=BF=1,∴在Rt△ADE和Rt△EFB中,由勾股定理得:∴ED==2,EF===,∴∠ADE=45°,又∵四边形DEFG是矩形,∴EF=DG,∠EDG=90°,∴DG=,∠HDG=45°,∴△DHG是等腰直角三角形,∴DH=HG=1,在△HGQ和△BCQ中有,∠GHQ=∠BCQ,∠HQG=∠CQB,∴△HGQ∽△BCQ,∴==,∵HC=HQ+CQ=2,∴HQ=,又∵DQ=DH+HQ,∴DQ=1+=,∵AB∥DC,EF∥DG,∴∠EBP=∠DQG,∠EPB=∠DGQ,∴△EBP∽△DQG(AA),∴=,综合所述,BP:QG的值为或.【点睛】本题考查了矩形的性质,轴对称的性质,全等三角形的判定与性质,相似三角形的判定与性质,等腰三角形的判定与性质;重点掌握相似三角形的判定与性质,难点是作辅助线和分类求值.21、(1)km;(2)【分析】(1)设为,根据题意可用含x的代数式依次表示出AM、AC、AN的长,然后在直角△CAN中利用解直角三角形的知识即可求出x的值,进而可得答案;(2)由(1)的结果可得CN的长,作,垂足为点,如图,根据题意易得∠DCN和∠DNC的度数,设HN=y,则可用y的代数式表示出CH,根据CH+HN=CN可得关于y的方程,解方程即可求出y的值,进一步即可求出结果.【详解】解:(1)设为,∵,∴,则,在中,∵,AC=AB+BC=x+40,AN=AM+MN=x+120,∴,即,解得:,∴km;(2)作,垂足为点,如图,由(1)可得,,∵,∴,∵,∴,∴CH=DH,∵,∴,设为,则,∴,解得:,∴.答:雷达站到其正上方点的距离为.【点睛】本题以“长征五号”遥三运载火箭发射为背景,是解直角三角形的典型应用题,主要考查了解直角三角形的知识,属于常考题型,正确添加辅助线构造直角三角形、熟练掌握锐角三角函数的知识是解题关键.22、(1)当时,;(2)();(3)存在,.【分析】(1)由题意可知,当OP⊥AP时,∽,∴,即,于是解得x值;(2)根据已知条件利用两角对应相等两个三角形相似,证明三角形OCM和三角形PCO相似,得出对应边成比例即可得出结论;(3)假设存在x符合题意.过作于点,交于点,由与面积之和等于的面积,∴.然后求出ED,EF的长,再根据三角形相似:∽,求出MP的长,进而由上题的关系式求出符合条件的x.【详解】解:(1)证明三角形OPC和三角形PAB相似是解决问题的关键,由题意知,,BC∥OA,∵,∴.∴.∴∽,∴,即,解得(不合题意,舍去).∴当时,;(2)由题意可知,∥,∴.∵(已知),∴.∵,∴∽,∴对应边成比例:,即.∴,因为点是边上一动点(不与点、点重合),且满足∽,所以的取值范围是.(3)假设存在符合题意.如图所示,过作于点,交于点,则.∵与面积之和等于的面积,∴.∴.∵∥,∴∽.∴.即,解得.由(2)得,所以.解得(不合题意舍去).∴在点的运动过程中存在x,,使与面积之和等于的面积,此时.【点睛】1.相似三角形的判定与性质;2.矩形性质.23、20°【分析】利用旋转的性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川省德阳市中江县2025-2026学年七年级上学期期末考试数学试题(含答案)
- 【初中语文】《秋天的怀念》课件++统编版语文七年级上册
- 分式专项(课件)中考数学一轮复习讲练测
- 2025-2026学年鲁教版(五四制)数学七年级上册期末模拟试题(含答案)
- 河南省许昌市鄢陵县彭店二中2025-2026学年七年级上册语文期末试卷(含答案 )
- 飞行技术专业
- 11月全球投资十大主线
- 人口分布第一课时课件2025-2026学年高中地理人教版必修二
- 基于MATLAB的四旋翼无人机PID控制研究
- 飞机的科普知识
- 2026中国国际航空招聘面试题及答案
- (2025年)工会考试附有答案
- 2026年国家电投集团贵州金元股份有限公司招聘备考题库完整参考答案详解
- 复工复产安全知识试题及答案
- 中燃鲁西经管集团招聘笔试题库2026
- 资产接收协议书模板
- 数据中心合作运营方案
- 印铁涂料基础知识
- 工资欠款还款协议书
- 石笼网厂施工技术交底
- 新建粉煤灰填埋场施工方案
评论
0/150
提交评论