威海市古寨中学2022年数学八年级第一学期期末经典模拟试题含解析_第1页
威海市古寨中学2022年数学八年级第一学期期末经典模拟试题含解析_第2页
威海市古寨中学2022年数学八年级第一学期期末经典模拟试题含解析_第3页
威海市古寨中学2022年数学八年级第一学期期末经典模拟试题含解析_第4页
威海市古寨中学2022年数学八年级第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图所示在中,边上的高线画法正确的是()A. B.C. D.2.直角三角形两条直角边的长分别为3和4,则斜边长为()A.4 B.5 C.6 D.103.如图,把一张长方形纸片沿对角线折叠,点的对应点为,与相交于点,则下列结论不一定成立的是()A.是等腰三角形 B.C.平分 D.折叠后的图形是轴对称图形4.如图,小方格都是边长为1的正方形,则△ABC中BC边上的高是()A.1.6 B.1.4 C.1.5 D.25.无论x取什么数,总有意义的分式是A. B. C. D.6.如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE7.某文化用品商店分两批购进同一种学生用品,已知第二批购进的数量是第一批购进数量的3倍,两批购进的单价和所用的资金如下表:单价(元)所用资金(元)第一批2000第二批6300则求第一批购进的单价可列方程为()A. B.C. D.8.已知三角形两边长分别为7、11,那么第三边的长可以是()A.2 B.3 C.4 D.59.如图反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离,根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米 B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米 D.张强从早餐店回家的平均速度是3千米/小时10.点(2,-3)关于原点对称的点的坐标是()A.(-2,3) B.(2,3) C.(-3,-2) D.(2,-3)11.下列各式运算正确的是()A. B. C. D.12.如图,MN是等边三角形ABC的一条对称轴,D为AC的中点,点P是直线MN上的一个动点,当PC+PD最小时,∠PCD的度数是()A.30° B.15° C.20° D.35°二、填空题(每题4分,共24分)13.已知实数m,n满足则=_____.14.甲、乙两车从A地出发,匀速驶往B地.乙车出发后,甲车才沿相同的路线开始行驶.甲车先到达B地并停留30分钟后,又以原速按原路线返回,直至与乙车相遇.图中的折线段表示从开始到相遇止,两车之间的距离与甲车行驶的时间的函数关系的图象,则其中正确的序号是___________.①甲车的速度是;②A,B两地的距离是;③乙车出发时甲车到达B地;④甲车出发最终与乙车相遇15.比较大小:-1______(填“>”、“=”或“<”).16.如图,在△ABC中,∠BAC=30°,∠ACB=45°,BD∥AC,BD=AB,且C,D两点位于AB所在直线两侧,射线AD上的点E满足∠ABE=60°.(1)∠AEB=___________°;(2)图中与AC相等的线段是_____________,证明此结论只需证明△________≌△_______.17.如图,小明把一副含45°角和30°角的直角三角板如图摆放,则∠1=____°.18.若边形的每个外角均为,则的值是________.三、解答题(共78分)19.(8分)某单位举行“健康人生”徒步走活动,某人从起点体育村沿建设路到市生态园,再沿原路返回,设此人离开起点的路程s(千米)与徒步时间t(小时)之间的函数关系如图所示,其中从起点到市生态园的平均速度是4千米/小时,用2小时,根据图象提供信息,解答下列问题.(1)求图中的a值.(2)若在距离起点5千米处有一个地点C,此人从第一次经过点C到第二次经过点C,所用时间为1.75小时.①求AB所在直线的函数解析式;②请你直接回答,此人走完全程所用的时间.20.(8分)如图,圆柱的底面半径为,圆柱高为,是底面直径,求一只蚂蚁从点出发沿圆柱表面爬行到点的最短路线,小明设计了两条路线:路线1:高线底面直径,如图所示,设长度为.路线2:侧面展开图中的线段,如图所示,设长度为.请按照小明的思路补充下面解题过程:(1)解:;(2)小明对上述结论有些疑惑,于是他把条件改成:“圆柱底面半径为,高为”继续按前面的路线进行计算.(结果保留)①此时,路线1:__________.路线2:_____________.②所以选择哪条路线较短?试说明理由.21.(8分)某县为落实“精准扶贫惠民政策”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合作施工15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合作完成.则甲、乙两队合作完成该工程需要多少天?22.(10分)已知:,.(1)求的值;(2)的值.23.(10分)小丽和爸爸进行1200米竞走比赛,爸爸的速度是小丽的1.5倍,小丽走完全程比爸爸多用5分钟,小丽和爸爸每分钟各走多少米?24.(10分)在平面直角坐标系中,B(2,2),以OB为一边作等边△OAB(点A在x轴正半轴上).(1)若点C是y轴上任意一点,连接AC,在直线AC上方以AC为一边作等边△ACD.①如图1,当点D落在第二象限时,连接BD,求证:AB⊥BD;②若△ABD是等腰三角形,求点C的坐标;(2)如图2,若FB是OA边上的中线,点M是FB一动点,点N是OB一动点,且OM+NM的值最小,请在图2中画出点M、N的位置,并求出OM+NM的最小值.25.(12分)如图,车高4m(AC=4m),货车卸货时后面支架AB弯折落在地面A1处,经过测量A1C=2m,求弯折点B与地面的距离.26.如图,已知直线y=kx+6经过点A(4,2),直线与x轴,y轴分别交于B、C两点.(1)求点B的坐标;(2)求△OAC的面积.

参考答案一、选择题(每题4分,共48分)1、B【分析】直接利用高线的概念得出答案.【详解】在中,边上的高线画法正确的是B,故选B.【点睛】此题主要考查了三角形高线的作法,正确把握相关定义是解题关键.2、B【解析】利用勾股定理即可求出斜边长.【详解】由勾股定理得:斜边长为:=1.故选B.【点睛】本题考查了勾股定理;熟练掌握勾股定理,理解勾股定理的内容是解题的关键.3、C【分析】由折叠前后的两个图形全等可以得出∠FBD=∠DBC,由长方形的性质可以得出AD∥BC,所以∠FDB=∠FBD=∠DBC,故得出是等腰三角形,根据折叠的性质可证的,折叠前后的两个图形是轴对称图形.【详解】解:∵∴∠FBD=∠DBC∵AD∥BC∴∠FDB=∠FBD=∠DBC∴是等腰三角形∴A选项正确;∵∴AB=ED在△AFB和△FED中∴∴B选项正确;折叠前后的图形是轴对称图形,对称轴为BD∴D选项正确;故选:C.【点睛】本题主要考查的是折叠前后的图形是轴对称图形并且全等,根据全等三角形的性质是解此题的关键.4、B【分析】根据勾股定理和三角形的面积公式即可得到结论.【详解】解:∵BC==5,∵S△ABC=4×4﹣×1×1﹣×3×4﹣×3×4=,∴△ABC中BC边上的高==,故选:B.【点睛】此题重点考查学生对勾股定理和三角形面积的理解,掌握勾股定理和三角形面积计算公式是解题的关键.5、C【分析】按照分式有意义,分母不为零即可求解.【详解】A.,x3+1≠1,x≠﹣1;B.,(x+1)2≠1,x≠﹣1;C.,x2+1≠1,x为任意实数;D.,x2≠1,x≠1.故选C.【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.6、B【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【详解】当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS)考点:全等三角形的判定与性质.7、B【分析】先根据“购进的数量=所用资金÷单价”得到第一批和第二批购进学生用品的数量,再根据“第二批购进的数量是第一批购进数量的3倍”即得答案.【详解】解:第一批购进的学生用品数量为,第二批购进的学生用品数量为,根据题意列方程得:.故选:B.【点睛】本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.8、D【解析】设第三边长为x,由题意得:11﹣7<x<11+7,解得:4<x<18,故选D.点睛:此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.9、C【分析】根据函数图象的横坐标,可得时间,根据函数图象的纵坐标,可得距离.【详解】A、由纵坐标看出,体育场离张强家2.5千米,故A正确;B、由横坐标看出,30-15=15分钟,张强在体育场锻炼了15分钟,故B正确;C、由纵坐标看出,2.5-1.5=1千米,体育场离早餐店1千米,故C错误;D、由纵坐标看出早餐店离家1.5千米,由横坐标看出从早餐店回家用了95-65=30分钟=0.5小时,1.5÷=3千米/小时,故D正确.故选C.【点睛】本题考查了函数图象,观察函数图象获得有效信息是解题关键.10、A【分析】根据关于原点对称点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:在平面直角坐标系中,关于原点对称的两点横坐标和纵坐标均满足互为相反数,点(2,-3)关于原点对称的点的坐标是(-2,3).故选A.【点睛】本题考查了关于原点对称点的坐标,熟练掌握坐标特征是解题的关键.11、D【分析】逐一对选项进行分析即可.【详解】A.不是同类项,不能合并,故该选项错误;B.,故该选项错误;C.,故该选项错误;D.,故该选项正确;故选:D.【点睛】本题主要考查同底数幂的乘除法,积的乘方,掌握同底数幂的乘除法和积的乘方的运算法则是解题的关键.12、A【分析】由于点C关于直线MN的对称点是B,所以当三点在同一直线上时,的值最小.【详解】由题意知,当B.

P、D三点位于同一直线时,PC+PD取最小值,连接BD交MN于P,∵△ABC是等边三角形,D为AC的中点,∴BD⊥AC,∴PA=PC,∴【点睛】考查轴对称-最短路线问题,找出点C关于直线MN的对称点是B,根据两点之间,线段最短求解即可.二、填空题(每题4分,共24分)13、【分析】根据完全平方公式进行变形,得到可得到结果,再开方即可得到最终结果.【详解】,代入可得,所以故答案为:.【点睛】考查利用完全平方公式求代数式的值,学生熟练掌握完全平方公式是本题解题的关键,并利用开平方求得最后的结果.14、①③④【分析】根据题意,两车距离为函数,由图象可知两车起始距离为60,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【详解】由点(0,60)可知:乙1小时行驶了60km,因此乙的速度是60km/小时,

由点(1.5,0)可知:1.5小时后甲追上乙,甲的速度是=100km/小时,故①正确;由点(b,80)可知:甲到B地,此时甲、乙相距80km,,解得:b=3.5,因此A、B两地的距离是100×3.5=350km,故②错误;甲车出发3.5小时到达B地,即乙车出发4.5小时,甲车到达B地,故③正确;c=b+=4,a=80-60×=50,,解得:d=,故:甲车出发最终与乙车相遇,故④正确;

∴正确的有①③④,

故填:①③④.【点睛】本题考查一次函数的应用,主要是以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.15、<【解析】首先求出-1的值是多少;然后根据实数大小比较的方法判断即可.【详解】解:-1=2-1=1,∵1<,∴-1<.故答案为:<.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.16、45BEABCBDE【分析】(1)由平行线和等腰三角形的性质得出∠BDA=∠BAD=75°,求出∠DBE=∠ABE-∠ABD=30°,由三角形的外角性质即可得出答案;(2)证出△ABC≌△BDE(AAS),得出AC=BE;即可得出答案.【详解】解:(1)∵BD∥AC,∴∠ABD=∠BAC=30°,∵BD=AB,∴∠BDA=∠BAD=(180°-30°)=75°,∵∠ABE=60°,∴∠DBE=∠ABE-∠ABD=30°,∴∠AEB=∠ADB-∠DBE=75°-30°=45°;故答案为:45°;(2)在△ABC和△BDE中,∴△ABC≌△BDE(AAS),∴AC=BE;故答案为:BE,ABC,BDE.【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形的外角性质等知识;熟练掌握全等三角形的判定和等腰三角形的性质是解题的关键.17、1【分析】根据三角形的一个外角等于与它不相邻的两个内角的和进行计算即可.【详解】解:如图所示,∵∠BAC=30°,∠ACB=90°,∴∠1=∠ACB+∠BAC=90°+30°=1°,故答案为:1.【点睛】本题考查的是三角形的内角和定理以及三角形外角的性质的运用,熟知三角形的一个外角等于与它不相邻的两个内角的和是解答此题的关键.18、【解析】用360°除以每一个外角的度数求出边数即可【详解】360°÷120°=3故答案为3【点睛】此题考查多边形的内角与外角,难度不大三、解答题(共78分)19、(1)a=1;(2)①s=–3t+2;②t=.【解析】(1)根据路程=速度×时间即可求出a值;(2)①根据速度=路程÷时间求出此人返回时的速度,再根据路程=1-返回时的速度×时间即可得出AB所在直线的函数解析式;②令①中的函数关系式中s=0,求出t值即可.【详解】(1)a=4×2=1.(2)①此人返回的速度为(1–5)÷(1.75–)=3(千米/小时),AB所在直线的函数解析式为s=1–3(t–2)=–3t+2.②当s=–3t+2=0时,t=.答:此人走完全程所用的时间为小时.【点睛】本题考查了一次函数的应用,解题的关键是:(1)根据路程=速度×时间求出a值;(2)①根据路程=1-返回时的速度×时间列出s与t之间的函数解析式;②令s=0求出t值.20、(1)见解析;(2)①.,②选择路线2较短,理由见解析.【分析】(1)根据勾股定理易得路线1:l12=AC2=高2+底面周长一半2;路线2:l22=(高+底面直径)2;让两个平方比较,平方大的,底数就大.(2)①l1的长度等于AB的长度与BC的长度的和;l2的长度的平方等于AB的长度的平方与底面周长的一半的平方的和,据此求出l2的长度即可;②比较出l12、l22的大小关系,进而比较出l1、l2的大小关系,判断出选择哪条路线较短即可【详解】(1);即所以选择路线1较短.(2)①l1=4+2×2=8,.②,即所以选择路线2较短.【点睛】此题主要考查了最短路径问题,以及圆柱体的侧面展开图,此题还考查了通过比较两个数的平方的大小,判断两个数的大小的方法的应用,要熟练掌握.21、(1)这项工程的规定时间是30天;(2)甲乙两队合作完成该工程需要18天.【分析】(1)设这项工程的规定时间是天,则甲队单独施工需要天完工,乙队单独施工需要天完工,依题意列方程即可解答;(2)求出甲、乙两队单独施工需要的时间,再根据题意列方程即可.【详解】(1)设这项工程的规定时间是天,则甲队单独施工需要天完工,乙队单独施工需要天完工,依题意,得:.解得:,经检验,是原方程的解,且符合题意.答:这项工程的规定时间是30天.(2)由(1)可知:甲队单独施工需要30天完工,乙队单独施工需要45天完工,(天),答:甲乙两队合作完成该工程需要18天.【点睛】本题考查分式方程的应用,理解题意,根据等量关系列出方程是解题的关键.22、(1)1;(2)【分析】(1)先将变形为3m3n,再代入求解;

(2)将变形为(3m)2÷3n,代入求解即可.【详解】解:(1)原式=3m3n,

=25

=1.

(2)原式=(3m)2÷3n,

=22÷5

=.【点睛】本题考查了同底数幂的除法、同底数幂的乘法,幂的乘方与积的乘方的知识,解答本题的关键在于熟练掌握各知识点的概念和运算法则.23、小丽每分钟走80米,爸爸每分钟走120米【分析】根据题意设小丽每分钟走米,则爸爸每分钟走米,列出方程,解方程并检验,得到答案.【详解】解:设小丽每分钟走米,则爸爸每分钟走米经检验,是原方程的根,并符合题意米答:小丽每分钟走80米,爸爸每分钟走120米.【点睛】本题考查的是分式方程的应用,列分式方程解应用题的一般步骤:设、列、解、验、答.24、(1)①见解析;②点C的坐标为(0,﹣4)或(0,4);(2)2【分析】(1)①证明△ABD≌△AOC(SAS),得出∠ABD=∠AOC=90°即可;②存在两种情况:当点D落在第二象限时,作BM⊥OA于M,由等边三角形的性质得出AO=2OM=4,同①得△ABD≌△AOC(SAS),得出BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,得出OC=AB=OA=4,则C(0,﹣4);当点D落在第一象限时,作BM⊥OA于M,由等边三角形的性质得出AO=2OM=4,同①得△ABD≌△AOC(SAS),得出BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,得出OC=AB=OA=4,则C(0,4);(2)作ON'⊥AB于N',作MN⊥OB于N,此时OM+MN的值最小,由等边三角形的性质和勾股定理求出ON=2即可.【详解】解:(1)①证明:∵△OAB和△ACD是等边三角形,∴BO=AO=AB,AC=AD,∠OAB=∠CAD=60°,∴∠BAD=∠OAC,在△ABD和△AOC中,,∴△ABD≌△AOC(SAS),∴∠ABD=∠AOC=90°,∴AB⊥BD;②解:存在两种情况:当点D落在第二象限时,如图1所示:作BM⊥OA于M,∵B(2,2),∴OM=2,BM=2,∵△OAB是等边三角形,∴AO=2OM=4,同①得:△ABD≌△AOC(SAS),∴BD=OC,∠ABD=∠OAC=90°,若△ABD是等腰三角形,则BD=AB,∴OC=AB=OA=4,∴C(0,﹣4);当点D落在第一象限时,如图1﹣1所示:作BM⊥OA于M,∵B(2,2),∴O

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论