




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届太原师院附中高二数学第一学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是函数的导函数,的图象如图所示,则的解集是()A. B.C. D.2.已知数列的通项公式为,则()A.12 B.14C.16 D.183.已知点是椭圆上一点,点,则的最小值为A. B.C. D.4.双曲线的渐近线的斜率是()A.1 B.C. D.5.已知为虚数单位,复数满足为纯虚数,则的虚部为()A. B.C. D.6.已知数列为等比数列,,则的值为()A. B.C. D.27.某制药厂为了检验某种疫苗预防的作用,把名使用疫苗的人与另外名未使用疫苗的人一年中的记录作比较,提出假设:“这种疫苗不能起到预防的作用”,利用列联表计算得,经查对临界值表知.则下列结论中,正确的结论是()A.若某人未使用该疫苗,则他在一年中有的可能性生病B.这种疫苗预防的有效率为C.在犯错误的概率不超过的前提下认为“这种疫苗能起到预防的作用”D.有的把握认为这种疫苗不能起到预防生病的作用8.已知数列中,,则()A.2 B.C. D.9.在平面直角坐标系中,双曲线的右焦点为,过双曲线上一点作轴的垂线足为,若,则该双曲线的离心率为()A. B.C. D.10.对任意实数k,直线与圆的位置关系是()A.相交 B.相切C.相离 D.与k有关11.以轴为对称轴,抛物线通径的长为8,顶点在坐标原点的抛物线的方程是()A. B.C.或 D.或12.双曲线的左焦点到其渐近线的距离是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点是抛物线上的两点,,点是抛物线的焦点,若,则的值为__________14.设f(x)=xlnx,若f′(x0)=2,则x0=________15.从1,2,3,4,5中任取两个不同的数,其中一个作为对数的底数a,另一个作为对数的真数b.则的概率为______.16.已知O为坐标原点,,是抛物线上的两点,且满足,则______;若OM垂直AB于点M,且为定值,则点Q的坐标为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)随着生活条件的改善,人们健身意识的增强,健身器械比较畅销,某商家为了解某种健身器械如何定价可以获得最大利润,现对这种健身器械进行试销售.统计后得到其单价x(单位:百元)与销量y(单位:个)的相关数据如下表:单价x(百元/个)3035404550日销售量y(个)1401301109080(1)已知销量y与单价x具有线性相关关系,求y关于x的线性回归方程;(2)若每个健身器械的成本为25百元,试销售结束后,请利用(1)中所求的线性回归方程确定单价为多少百元时,销售利润最大?(结果保留到整数),附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为.参考数据:.18.(12分)已知命题:对任意实数都有恒成立;命题:关于的方程有实数根(1)若命题为假命题,求实数的取值范围;(2)如果“”为真命题,且“”为假命题,求实数的取值范围19.(12分)如图,在直角梯形中,.直角梯形通过直角梯形以直线为轴旋转得到,且使得平面平面.M为线段的中点,P为线段上的动点(1)求证:;(2)当点P满足时,求证:直线平面;(3)是否存在点P,使直线与平面所成角的正弦值为?若存在,试确定P点的位置;若不存在,请说明理由20.(12分)如图,在空间直角坐标系中有长方体,且,,点E在棱AB上移动.(1)证明:;(2)当E为AB的中点时,求直线AC与平面所成角的正弦值.21.(12分)设等差数列的前项和为,已知.(1)求数列的通项公式;(2)当为何值时,最大,并求的最大值.22.(10分)已知的顶点,边上的中线所在直线方程为,边上的高所在直线方程为.求:(1)顶点的坐标;(2)直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先由图像分析出的正负,直接解不等式即可得到答案.【详解】由函数的图象可知,在区间上单调递减,在区间(0,2)上单调递增,即当时,;当x∈(0,2)时,.因为可化为或,解得:0<x<2或x<0,所以不等式的解集为.故选:C2、D【解析】利用给定的通项公式直接计算即得.【详解】因数列的通项公式为,则有,所以.故选:D3、D【解析】设,则,.所以当时,的最小值为.故选D.4、B【解析】由双曲线的渐近线方程为:,化简即可得到答案.【详解】双曲线的渐近线方程为:,即,渐近线的斜率是.故选:B5、D【解析】先设,代入化简,由纯虚数定义求出,即可求解.【详解】设,所以,因为为纯虚数,所以,解得,所以的虚部为:.故选:D.6、B【解析】根据等比数列的性质计算.【详解】由等比数列的性质可知,且等比数列奇数项的符号相同,所以,即.故选:B7、C【解析】根据的值与临界值的大小关系进行判断.【详解】∵,,∴在犯错误的概率不超过的前提下认为“这种疫苗能起到预防的作用”,C对,由已知数据不能确定若某人未使用该疫苗,则他在一年中有的可能性生病,A错,由已知数据不能判断这种疫苗预防的有效率为,B错,由已知数据没有的把握认为这种疫苗不能起到预防生病的作用,D错,故选:C.8、A【解析】根据数列的周期性即可求解.【详解】由得,显然该数列中的数从开始循环,数列的周期是,所以.故选:A.9、A【解析】根据条件可知四边形为正方形,从而根据边长相等,列式求双曲线的离心率.【详解】不妨设在第一象限,则,根据题意,四边形为正方形,于是,即,化简得,解得(负值舍去).故选:A.10、A【解析】判断直线恒过定点,可知定点在圆内,即可判断直线与圆的位置关系.【详解】由可知,即该圆的圆心坐标为,半径为,由可知,则该直线恒过定点,将点代入圆的方程可得,则点在圆内,则直线与圆的位置关系为相交.故选:.11、C【解析】由分焦点在轴的正半轴上和焦点在轴的负半轴上,两种情况讨论设出方程,根据,即可求解.【详解】由题意,抛物线的顶点在原点,以轴为对称轴,且通经长为8,当抛物线的焦点在轴的正半轴上时,设抛物线的方程为,可得,解得,所以抛物线方程为;当抛物线的焦点在轴的负半轴上时,设抛物线的方程为,可得,解得,所以抛物线方程为,所以所求抛物线的方程为.故选:C.12、A【解析】求出双曲线焦点坐标与渐近线方程,利用点到直线的距离公式可求得结果.【详解】在双曲线中,,,,所以,该双曲线的左焦点坐标为,渐近线方程为,即,因,该双曲线的左焦点到渐近线的距离为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、10【解析】由抛物线的定义根据题意可知求得p,代入抛物线方程,分别求得y1,y2的值,即可求得y12+y2的值【详解】由抛物线的定义可得,依据题设可得,则(舍去负值),故,故填.【点睛】本题考查抛物线的定义和性质,利用已知相等关系求解抛物线方程,然后求解已知点的纵坐标,解题中需要熟练抛物的定义和性质,灵活应用.14、【解析】f(x)=xlnx∴f'(x)=lnx+1则f′(x0)=lnx0+1=2解得:x0=e15、##【解析】利用列举法,结合古典概型概率计算公式以及对数的知识求得正确答案.【详解】的所有可能取值为,,共种,满足的为,,共种,所以的概率为.故答案为:16、①.-24②.【解析】由抛物线的方程及数量积的运算可求出,设直线AB的方程为,联立抛物线方程,由根与系数的关系可求出,由圆的定义求出圆心即可.【详解】由,即解得或(舍去).设直线AB的方程为.由,消去x并整理得,.又,,直线AB恒过定点N(6,0),OM垂直AB于点M,点M在以ON为直径圆上.|MQ|为定值,点Q为该圆的圆心,又即Q(3,0).故答案为:;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)确定单价为50百元时,销售利润最大.【解析】(1)根据参考公式和数据求出,进而求出线性回归方程;(2)设出定价,结合(1)求出利润,进而通过二次函数的性质求得答案.【小问1详解】由题意,,则,,结合参考数据可得,,所以线性回归方程为.【小问2详解】设定价为x百元,利润为,则,由题意,则(百元)时,最大.故确定单价为50百元时,销售利润最大.18、(1);(2)【解析】(1)先分别求出命题为真命题和命题为真命题时参数的范围,则可得当命题为假命题,实数的取值范围(2)由“”为真命题,且“”为假命题,则命题,一真一假,再分真,且假,和真,且假两种情况分别求出参数的范围,再综合得到答案.【详解】命题为真命题:对任意实数都有恒成立或;命题为真命题:关于的方程有实数根;(1)命题为假命题,则实数取值范围(2)由“”为真命题,且“”为假命题,则命题,一真一假.如果真,且假,有,且,则如果真,且假,有或,且,则综上,实数的取值范围为19、(1)见解析(2)见解析(3)存在点P,【解析】(1)建立空间坐标系求两直线的方向向量,根据数量积为0可证的结论;(2)求得直线的方向向量和面的法向量,证得两向量垂直即可;(3)求直线的方向向量和面的法向量的夹角即可.【小问1详解】由已知可得,,,两两垂直,以A为原点,,,所在直线为轴,轴,轴建立如图空间直角坐标系,因为,所以,,,,,,,,,∴,,∴,,即,,∴平面又∵平面,∴【小问2详解】设点坐标为,则,∵,∴,,,解得:,,,即设平面的一个法向量,∵,,∴,即,令,则,,得又,∴∴直线平面【小问3详解】设,则,设的一个法向量为∵,,∴,解,令,则,,得设与平面所成角为,则.解得:或(舍).故存在点P,,即点P为距的第一个5等分点20、(1)证明见解析(2)【解析】(1)设,求出,,利用向量法能求出;(2)求出平面的法向量,利用向量法能求出直线与平面所成角的正弦值【小问1详解】证明:设,,,,;【小问2详解】当为的中点时,,,设平面的法向量,则,取,得,设直线与平面所成角为,则直线与平面所成角的正弦值为:21、(1)(2)n为6或7;126【解析】(1)设等差数列的公差为d,利用等差数列的通项公式求解;(2)由,利用二次函数的性质求解.【小问1详解】解:设等差数列的公差为d,因为.所以,解得,所以;【小问2详解】,当或7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏无锡市锡山中学2025届高三总复习质量测试(一)物理试题含解析
- 山东省枣庄达标名校2024-2025学年中考数学试题仿真卷:数学试题试卷(5)含解析
- 吉林省榆树一中五校联考2024-2025学年高三第二学期综合练习(一)历史试题含解析
- 临沂市重点中学2025年初三3月复习质量检测试题生物试题含解析
- 四川工商学院《公共建筑设计Ⅲ》2023-2024学年第二学期期末试卷
- 济南市天桥区2025届初三下学期第一次测评生物试题试卷含解析
- 上海市杨浦区2024-2025学年初三第一次强化训练物理试题含解析
- 2025年哲学本科毕业生考试试卷及答案
- 2025年室内设计师考试试题及答案
- 上海市徐汇、金山、松江区2025届五校联考高考模拟含解析
- Unit3OnthemoveDevelopingideasRunningintoabetterlife教学设计-高一下学期外研版英语
- LDS236数字式电动机保护测控装置调试报告
- 生物航煤行业前景
- YS/T 819-2012电子薄膜用高纯铜溅射靶材
- GB/T 3961-1993纤维增强塑料术语
- 学校项目工程监理规划
- 杭州市高层次人才分类认定申请表-
- 高考语文答题思维导图
- 教练技术三阶段讲义
- 设备检维修作业票填写模板
- 湖北省高等学校教学成果奖推荐书、申请简表
评论
0/150
提交评论