




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2024年浙江省湖州市实验学校数学九上开学达标检测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)以下列各组数为一个三角形的三边长,能构成直角三角形的是().A.2,3,4 B.4,6,5 C.14,13,12 D.7,25,242、(4分)关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等.以上四个条件中可以判定四边形ABCD是平行四边形的有()A.1个B.2个C.3个D.4个3、(4分)下列命题为真命题的是()A.若ab>0,则a>0,b>0B.两个锐角分别相等的两个直角三角形全等C.在一个角的内部,到角的两边距离相等的点在这个角的平分线上D.一组对边平行,另一组对边相等的四边形是平行四边形4、(4分)已知三角形两边长为2和6,要使该三角形为直角三角形,则第三边的长为()A. B. C.或 D.以上都不对5、(4分)已知正比例函数y=kx的图象经过第一、三象限,则一次函数y=kx﹣k的图象可能是下图中的()A. B. C. D.6、(4分)如图,在六边形中,,分别平分,则的度数为()A. B. C. D.7、(4分)下列计算:,其中结果正确的个数为()A.1 B.2 C.3 D.48、(4分)将直线y=2x-3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如果点P(m+3,m+1)在x轴上,则点P的坐标为________10、(4分)从A,B两题中任选一题作答:A.如图,在ΔABC中,分别以点A,B为圆心,大于AB的长为半径画弧,两弧交与点M,N,作直线MN交AB于点E,交BC于点F,连接AF。若AF=6,FC=4,连接点E和AC的中点G,则EG的长为__.B.如图,在ΔABC中,AB=2,∠BAC=60°,点D是边BC的中点,点E在边AC上运动,当DE平分ΔABC的周长时,DE的长为__.11、(4分)如图,A,B的坐标为(1,0),(0,2),若将线段AB平移至A1B1,则a﹣b的值为____.12、(4分)如图,将ABCD的一边BC延长至E,若∠A=110°,则∠1=________.13、(4分)如图,在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为____.三、解答题(本大题共5个小题,共48分)14、(12分)某公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如下表:(单位:分)应聘者阅读能力思维能力表达能力甲859080乙958095(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)若将阅读能力、思维能力和表达能力三项测试得分按1:3:1的比确定每人的最后成绩,谁将被录用?15、(8分),,且,,求和的度数.16、(8分)某中学举办“校园好声音”朗诵大赛,根据初赛成绩,七年级和八年级各选出5名选手组成七年级代表队和八年级代表队参加学校决赛两个队各选出的5名选手的决赛成绩如图所示:(1)根据所给信息填写表格;平均数(分)中位数(分)众数(分)七年级
85
八年级85
100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)若七年级代表队决赛成绩的方差为70,计算八年级代表队决赛成绩的方差,并判断哪个代表队的选手成绩较为稳定.17、(10分)如图,已知分别是△的边上的点,若,,.(1)请说明:△∽△;(2)若,求的长.18、(10分)如图1,在正方形ABCD中,E,F分别是AD,CD上两点,BE交AF于点G,且DE=CF.(1)写出BE与AF之间的关系,并证明你的结论;(2)如图2,若AB=2,点E为AD的中点,连接GD,试证明GD是∠EGF的角平分线,并求出GD的长;(3)如图3,在(2)的条件下,作FQ∥DG交AB于点Q,请直接写出FQ的长.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件________使其成为菱形(只填一个即可).20、(4分)在平面直角坐标系中,将点向右平移1个单位,再向下平移2个单位得到点,则点的坐标为_________.21、(4分)如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=8cm,EF=15cm,则边AD的长是______cm.22、(4分)若,则=______23、(4分)请写出一个图象经过点的一次函数的表达式:______.二、解答题(本大题共3个小题,共30分)24、(8分)2020年初,“新型冠状病毒”肆虐全国,武汉“封城”.大疫无情人有情,四川在做好疫情防控的同时,向湖北特别是武汉人们伸出了援手,医疗队伍千里驰援、社会各界捐款捐物.某运输公司现有甲、乙两种货车,要将234吨生活物资从成都运往武汉,已知2辆甲车和3辆乙车可运送114吨物资;3辆甲车和2辆乙车可运送106吨物资.(1)求每辆甲车和每辆乙车一次分别能装运多少吨生活物资?(2)从成都到武汉,已知甲车每辆燃油费2000元,乙车每辆燃油费2600元.在不超载的情况下公司安排甲、乙两种车共10辆将所有生活物资运到武汉,问公司有几种派车方案?哪种方案所用的燃油费最少?最低燃油费是多少?25、(10分)已知a,b是直角三角形的两边,且满足,求此三角形第三边长.26、(12分)如图,在□ABCD中,∠ADB=90°,点E为AB边的中点,点F为CD边的中点.(1)求证:四边形DEBF是菱形;(2)当∠A等于多少度时,四边形DEBF是正方形?并说明你的理由.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、D【解析】分析:根据勾股定理的逆定理,对四个选项中的各组数据分别进行计算,如果三角形的三条边符合a2+b2=c2,则可判断是直角三角形,否则就不是直角三角形.解答:解:∵72+242=49+576=625=1.∴如果这组数为一个三角形的三边长,能构成直角三角形.故选D.2、C【解析】
根据平行四边形的判定定理可知①②③可以判定四边形ABCD是平行四边形.故选C.3、C【解析】
利用不等式的性质、三角形全等的判定、角平分线的性质及平行四边形的判定分别判断后即可确定正确的选项.【详解】A、若ab>0,则a、b同号,错误,是假命题;B、两个锐角分别相等的两个直角三角形不一定全等,错误,是假命题;C、在一个角的内部,到角的两边距离相等的点在这个角的平分线上,正确,是真命题;D、一组对边平行,另一组对边相等的四边形可以是等腰梯形,错误,是假命题;故选:C.考查了命题与定理的知识,解题的关键是了解不等式的性质、三角形全等的判定、角平分线的性质及平行四边形的判定等知识,难度不大.4、C【解析】
根据勾股定理,分所求第三边为斜边和所求第三边为直角边两种情况计算即可.【详解】解:根据勾股定理分两种情况:(1)当所求第三边为斜边时,第三边长为:;(1)当所求第三边为直角边时,第三边长为:;所以第三边长为:或.故选C.本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a和b,斜边为c,那么a1+b1=c1.也就是说,直角三角形两条直角边的平方和等于斜边的平方.5、D【解析】
根据正比例函数的图象经过第一,三象限可得:,因此在一次函数中,,根据直线倾斜方向向右上方,直线与y轴的交点在y轴负半轴,画出图象即可求解.【详解】根据正比例函数的图象经过第一,三象限可得:所以,所以一次函数中,,所以一次函数图象经过一,三,四象限,故选D.本题主要考查一次函数图象象限分布性质,解决本题的关键是要熟练掌握一次函数图象图象的象限分布性质.6、A【解析】
由多边形内角和定理求出∠A+∠B+∠E+∠F+∠CDE+∠BCD=720°①,由角平分线定义得出∠BCP=∠DCP,∠CDP=∠PDE,根据三角形内角和定理得出∠P+∠PCD+∠PDE=180°,得出2∠P+∠BCD+∠CDE=360°②,由①和②即可求出结果.【详解】在六边形ABCDEF中,∠A+∠B+∠E+∠F+∠CDE+∠BCD=(6-2)×180°=720°①,CP、DP分別平分∠BCD、∠CDE,∴∠BCP=∠DCP,∠CDP=∠PDE,∠P+∠PCD+∠PDE=180°,∴2(∠P+∠PCD+∠PDE)=360°,即2∠P+∠BCD+∠CDE=360°②,①-②得:∠A+∠B+∠E+∠F-2∠P=360°,即α-2∠P=360°,∴∠P=α-180°,故选:A.本题考查了多边形内角和定理、角平分线定义以及三角形内角和定理;熟记多边形内角和定理和三角形内角和定理是解题关键.7、D【解析】
根据二次根式的运算法则即可进行判断.【详解】,正确;正确;正确;,正确,故选D.此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质:;.8、B【解析】
根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式,此题得解.【详解】y=2(x-2)-3+3=2x-1.化简,得y=2x-1,故选B.本题考查了一次函数图象与几何变换,牢记平移的规则“左加右减,上加下减”是解题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、(2,0)【解析】
根据x轴上点的坐标特点解答即可.【详解】解:∵点P(m+3,m+1)在直角坐标系的x轴上,∴点P的纵坐标是0,∴m+1=0,解得,m=-1,∴m+3=2,则点P的坐标是(2,0).故答案为(2,0).10、A.5B.【解析】
A.由作法知MN是线段AB的垂直平分线,所以BF=AF=6,然后根据EG是三角形ABC的中位线求解即可;B.延长CA到点B′,使AB’等于AB,连接BB′,过点A作AF⊥BB′,垂足为F.由ED平分ΔABC的周长,可知EB′=EC,从而DE为ΔCBB′的中位线,由等腰三角形的性质求出∠B=∠B′=30°,从而BF=,进而可求出DE的长.【详解】A.由尺规作图可得直线MN为线段AB的垂直平分线,∴BF=AF=6,E为AB中点,∵点G为AC中点,∴EG为ΔABC的中位线,∴EG∥BC且EG=BC,∵BF+FC=10,∴EG=5;B.如图所示,延长CA到点B′,使AB’等于AB,连接BB′,过点A作AF⊥BB′,垂足为F.∵ED平分ΔABC的周长,∴AB+AE+BD=EC+DC.∵BD=DC,∴AB+AE=EC.∵AB=AB′,∴EB′=EC,∴DE为ΔCBB′的中位线.∵∠BAC=60°,∴ΔBAB′为顶角是120°的等腰三角形,∴∠B=∠B′=30°,∴AF=1,∴BF=,∴BB′=2,∴ED=.故答案为:A.5;B.本题考查了尺规作图-作线段的垂直平分线,线段垂直平分线的性质,三角形中位线的性质,等腰三角形的性质、勾股定理,掌握三角形中位线定理、正确作出辅助线是解题的关键.11、1【解析】试题解析:由B点平移前后的纵坐标分别为2、4,可得B点向上平移了2个单位,由A点平移前后的横坐标分别是为1、3,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=2,b=2,故a-b=1.【点睛】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.12、70°【解析】
解:∵平行四边形ABCD的∠A=110°,∴∠BCD=∠A=110°,∴∠1=180°-∠BCD=180°-110°=70°.故答案为:70°.13、1【解析】
根据直角三角形的性质(斜边上的中线等于斜边的一半),求出DM=AB=3,即可得到ME=1,根据题意求出DE=DM+ME=4,根据三角形中位线定理可得BC=2DE=1.【详解】解:∵AM⊥BM,点D是AB的中点,
∴DM=AB=3,
∵ME=DM,
∴ME=1,
∴DE=DM+ME=4,
∵D是AB的中点,DE∥BC,
∴BC=2DE=1,
故答案为:1.点睛:本题考查的是三角形的中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)乙将被录用;(2)甲将被录用【解析】
(1)根据平均数的计算公式分别进行计算即可;(2)根据加权平均数的计算公式分别进行解答即可.【详解】解:(1)∵=(85+90+80)÷3=85(分),=(95+80+95)÷3=90(分),∴<,∴乙将被录用;(2)根据题意得:==87(分),==86(分);∴>,∴甲将被录用.故答案为(1)乙将被录用;(2)甲将被录用.本题主要考查平均数,解题的关键是熟练掌握算术平均数和加权平均数的计算公式.15、,的度数分别为,.【解析】
连接AD,由条件AB∥DE,AF∥CD,进一步可得,再在四边形ABCD中,用四边形内角和是360°求出即可.【详解】解:连接.∵AB∥DE,∴.∵AF∥CD,∴.∵,∴,.在四边形中,.∵,∴.∴,的度数分别为,.本题需要熟练运用平行线的性质和四边形内角和定理进行求解,解题的关键是连接AD,先将转化为,再用四边形内角和是360°求解,需要注意的是在用四边形内角和求时用到了整体思想.16、(1)填表见解析;(2)七年级代表队成绩好些;(3)七年级代表队选手成绩较为稳定.【解析】
(1)根据平均数、众数和中位数的定义分别进行解答即可;(2)根据表格中的数据,可以结合两个年级成绩的平均数和中位数,说明哪个队的决赛成绩较好;(3)根据方差公式先求出八年级的方差,再根据方差的意义即可得出答案.【详解】(1)八年级的平均成绩是:(75+80+85+85+100)÷5=85(分);85出现了2次,出现的次数最多,则众数是85分;把八年级的成绩从小到大排列,则中位数是80分;填表如下:平均数(分)中位数(分)众数(分)初二858585初三8580100(2)七年级代表队成绩好些.∵两个队的平均数都相同,七年级代表队中位数高,∴七年级代表队成绩好些.(3)S八年级2=[(70-85)2+(100-85)2+(100-85)2+(75-85)2+(80-85)2]=160;∵S七年级2<S八年级2,∴七年级代表队选手成绩较为稳定.本题考查了方差:一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了中位数和众数.17、(1)证明见解析(2)12【解析】
(1)根据∠A,∠C利用三角形内角和定理求得∠B=60°,再根据∠A是公共角即可求证△ADE∽△ABC;(2)根据△ADE∽△ABC,利用相似三角形对应边成比例,将已知条件代入即可得出答案.【详解】(1)在中,△ADE∽△ABC(2)△ADE∽△ABC,18、(1)BE=AF,BE⊥AF;(2)GD是∠EGF的角平分线,证明见解析,GD=2105;(3)FQ=【解析】
(1)根据已知条件可先证明△BAE≌△ADF,得到BE=AF,再由角的关系得到∠AGE=90°从而证明BE⊥AF;(2)过点D作DN⊥AF于N,DM⊥BE交BE的延长线于M,根据勾股定理和三角形的面积相等求出DN,然后证明△AEG≌△DEM,得到DN=DM,再根据角平分线的性质可证明GD平分∠EGF,进而在等腰直角三角形中求得GD;(3)过点G作GH∥AQ交FQ于H,可得到四边形DFHG是平行四边形,进而可得△FGH∽△FAQ,然后根据三角形相似的性质可求得FQ.【详解】解:(1)BE=AF,BE⊥AF,理由:四边形ABCD是正方形,∴BA=AD=CD,∠BAE=∠D=90°,∵DE=CF,∴AE=DF,∴△BAE≌△ADF(SAS),∴BE=AF,∠ABE=∠DAF,∵∠ABE+∠AEB=90°,∴∠DAF+∠AEB=90°,∴∠AGE=90°,∴BE⊥AF(2)如图2,过点D作DN⊥AF于N,DM⊥BE交BE的延长线于M,在Rt△ADF中,根据勾股定理得,AF=5,∵S△ADF=12AD×FD=12∴DN=25∵△BAE≌△ADF,∴S△BAE=S△ADF,∵BE=AF,∴AG=DN,∵AE=DE,∠MED=∠AEG,∠DME=∠AGM,∴△AEG≌△DEM(AAS),∴AG=DM,∴DN=DM,∵DM⊥BE,DN⊥AF,∴GD平分∠MGN,即GD平分∠EGF,∴∠DGN=12∠MGN=45°∴△DGN是等腰直角三角形,∴GD=2DN=210(3)如图3,由(2)知,GD=2105,AF=5,AG=DN=∴FG=AF﹣AG=35过点G作GH∥AQ交FQ于H,∴GH∥DF,∵FQ∥DG,∴四边形DFHG是平行四边形,∴FH=DG=210∵GH∥AQ,∴△FGH∽△FAQ,∴FGAF∴35∴FQ=210全等三角形的判定和性质、勾股定理、角平分线的性质、平行四边形的判定和性质都是本题的考点,此题综合性比较强,熟练掌握基础知识并作出合适的辅助线是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、AC⊥BC或∠AOB=90°或AB=BC(填一个即可).【解析】试题分析:根据菱形的判定定理,已知平行四边形ABCD,添加一个适当的条件为:AC⊥BC或∠AOB=90°或AB=BC使其成为菱形.考点:菱形的判定.20、(-1,1)【解析】
根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【详解】解:将点向右平移1个单位,再向下平移2个单位得到点,则点的坐标为(-1,1).故答案为(-1,1).本题考查了坐标系中点的平移规律.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.21、【解析】
通过设各线段参数,利用勾股定理和射影定理建立各参数的关系方程,即可解决.【详解】解:设AH=e,AE=BE=f,BF=HD=m在Rt△AHE中,e2+f2=82在Rt△EFH中,f2=em在Rt△EFB中,f2+m2=152(e+m)2=e2+m2+2em=189AD=e+m=3故答案为3本题考查了翻折的性质,利用直角三角形建立方程关系求解.22、【解析】
设=k,同x=2k,y=4k,z=5k,再代入中化简即可.【详解】设=k,x=2k,y=4k,z=5k=.故答案是:.考查的是分式化简问题,利用比例性质通过设未知数的方式,代入分式化简可以求解.23、y=2x-1【解析】
可设这个一次函数解析式为:,把代入即可.【详解】设这个一次函数解析式为:,把代入得,这个一次函数解析式为:不唯一.一次函数的解析式有k,b两个未知数当只告诉一个点时,可设k,b中有一个已知数,然后把点的坐标代入即可.二、解答题(本大题共3个小题,共30分)24、(1)每辆甲车一次能装运18吨生活物资,每辆乙车一次能装运26吨生活物资;(2)公司有3种派车方案,安排3辆甲车,7辆乙车时,所用的燃油费最少,最低燃油费是1元.【解析】
(1)设每辆甲车一次能装运x吨生活物资,每辆乙车一次能装运y吨生活物资,根据“2辆甲车和3辆乙车可运送114吨物资;3辆甲车和2辆乙车可运送106吨物资”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设该公司安排m辆甲车,则安排(10−m)辆乙车,根据10辆车的总运载量不少于234吨,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,结合m为正整数即可得出各派车方案,设总燃油费为w元,根据总燃油费=每辆车的燃油费×派车辆数,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.【详解】解:(1)设每辆甲车一次能装运x吨生活物资,每辆乙车一次能装运y吨生活物资,依题意得:,解得:,答:每辆甲车一次能装运18吨生活物资,每辆乙车一次能装运26吨生活物资;(2)设该公司安排m辆甲车,则安排(10−m)辆乙车,依题意得:18m+26(10−m)≥234,解得:m≤,又∵m为正整数,∴m可以为1,2,3,∴公司有3种派车方案,方案1:安排1辆甲车,9辆乙车;方案2:安排
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 充分条件与必要条件教学设计
- 统编版语文四下《第七单元复习》课件
- 动物检疫个人工作总结模版
- 流动商住楼小区重大危险源专项的施工组织方案
- 大学生职业规划大赛《国际商务专业》生涯发展展示
- 老年卧床女性护理
- 普通服务员年终总结模版
- 员工消防培训试题及答案
- 银行投行面试题目及答案
- 一级建造师资格考试试题及答案
- 抖音陪跑合同协议
- 高三尖子生、边缘生辅导方案2
- 湖北省武汉市2025届高中毕业生四月调研考试政治试题及答案(武汉四调)
- 海鲜门店管理制度
- 消化内镜操作技术
- 数据清理与预处理试题及答案
- 安徽省C20教育联盟2025年九年级英语中考“功夫”卷(一)
- T-CNFIA 208-2024 花胶干鱼鳔标准
- 管理学基础-形考任务二-国开-参考资料
- 冷库库板安装合同
- 中国糖尿病防治指南(2024版)图文完整版
评论
0/150
提交评论