




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省东营市利津一中2025届高一数学第一学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则=()A. B.C. D.2.在平面直角坐标系中,直线的斜率是()A. B.C. D.3.将函数fx的图象向右平移φφ>0个单位长度,得到函数gx=sinx+π6的图象.A.π6 B.C.2π3 D.4.已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为()A. B.C. D.5.已知,,,则下列关系中正确的是A. B.C. D.6.如图,网格纸的各小格都是正方形(边长为1),粗实线画出的是一个凸多面体的三视图(两个矩形,一个直角三角形),则这个几何体的表面积为()A. B.C. D.7.设,表示两条直线,,表示两个平面,则下列命题正确的是A.若,,则 B.若,,则C.若,,则 D.若,,则8.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边经过点,那么的值是()A. B.C. D.9.若||=1,||=2,||=,则与的夹角的余弦值为()A. B.C. D.10.在平行四边形中,设,,,,下列式子中不正确的是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数fx=12.已知函数,若函数有三个零点,则实数的取值范围是________.13.函数的图象一定过定点,则点的坐标是________.14.已知,若,则________15.已知函数,若函数恰有三个不同的零点,则实数k的取值范围是_____________16.已知幂函数在上单调递减,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知(1)化简;(2)若,求值18.已知函数,(1)求的单调递增区间;(2)令函数,再从条件①、条件②这两个条件中选择一个作为已知,求在区间上的最大值及取得最大值时的值条件①:;条件②:注:如果选择条件①和条件②分别解答,按第一个解答计分19.已知函数在一个周期内的图像经过点和点,且的图像有一条对称轴为.(1)求的解析式及最小正周期;(2)求的单调递增区间.20.已知(1)求函数的单调递增区间;(2)当时,函数的值域为,求实数的范围21.已知函数(a>0且a≠1).(1)若f(x)在[-1,1]上的最大值与最小值之差为,求实数a的值;(2)若,当a>1时,解不等式.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据两角和的正切公式求出,再根据二倍角公式以及同角三角函数的基本关系将弦化切,代入求值即可.【详解】解:解得故选:【点睛】本题考查三角恒等变换以及同角三角函数的基本关系,属于中档题.2、A【解析】将直线转化成斜截式方程,即得得出斜率.【详解】解:由题得,原式可化为,斜率.故选:A.3、C【解析】根据正弦型函数图象变换的性质,结合零点的定义和正弦型函数的性质进行求解即可.【详解】因为函数fx的图象向右平移φφ>0个单位长度,得到函数gx=sinx+π6的图象,所以函数因为x=0是函数Fx所以F0=f0所以sinφ+π6=1解得:φ=2kπ(k∈Z),或φ=2kπ+2π3(k∈Z)当φ=2kπ(k∈Z)时,因为φ>0,所以φ的最小值是2π,当φ=2kπ+2π3(k∈Z)时,因为φ>0,所以φ综上所述φ的最小值是2π3故选:C4、C【解析】根据直观图的面积与原图面积的关系为,计算得到答案.【详解】直观图的面积,设原图面积,则由,得.故选:C.【点睛】本题考查了平面图形的直观图的面积与原面积的关系,三角形的面积公式,属于基础题.5、C【解析】利用函数的单调性、正切函数的值域即可得出【详解】,,∴,又∴,则下列关系中正确的是:故选C【点睛】本题考查了指对函数的单调性、三角函数的单调性的应用,属于基础题6、B【解析】根据三视图的法则:长对正,高平齐,宽相等;可得几何体如右图所示,这是一个三棱柱.表面积为:故答案为B.7、D【解析】对选项进行一一判断,选项D为面面垂直判定定理.【详解】对A,与可能异面,故A错;对B,可能在平面内;对C,与平面可能平行,故C错;对D,面面垂直判定定理,故选D.【点睛】本题考查空间中线、面位置关系,判断一个命题为假命题,只要能举出反例即可.8、A【解析】根据三角函数的定义计算可得结果.【详解】因为,,所以,所以.故选:A9、B【解析】由题意把||两边平方,结合数量积的定义可得【详解】||=1,||=2,与的夹角θ,∴||27,∴12+2×1×2×cosθ+22=7,解得cosθ故选:B10、B【解析】根据向量加减法计算,再进行判断选择.【详解】;;;故选:B【点睛】本题考查向量加减法,考查基本分析求解能力,属基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、(0.+∞)【解析】函数定义域为R,∵3x>0∴3考点:函数单调性与值域12、【解析】作出函数图象,进而通过数形结合求得答案.【详解】问题可以转化为函数的图象与直线有3个交点,如图所示:所以时满足题意.故答案为:.13、【解析】令,得,再求出即可得解.【详解】令,得,,所以点的坐标是.故答案:14、1【解析】由已知条件可得,构造函数,求导后可判断函数在上单调递增,再由,得,从而可求得答案【详解】由题意得,,令,则,所以在上单调递增,因为,所以,所以,故答案为:115、【解析】根据函数解析式画出函数图象,则函数的零点个数,转化为函数与有三个交点,结合函数图象判断即可;【详解】解:因为,函数图象如下所示:依题意函数恰有三个不同的零点,即函数与有三个交点,结合函数图象可得,即;故答案为:16、##【解析】依题意得且,即可求出,从而得到函数解析式,再代入求值即可;【详解】解:由题意得且,则,,故故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2).【解析】(1)根据诱导公式及同角关系式化简即得;(2)根据可知,从而求得结果.【小问1详解】由诱导公式可得:;【小问2详解】由于,有,得,,可得故的值为.18、(1),(2)答案不唯一,具体见解析【解析】(1)根据正弦函数的单调增区间建立不等式求解即可得出;(2)选①代入,化简,令,转化为二次函数求值域即可,选择条件②代入化简,令,根据正弦函数的图象与性质求最值即可求解.【小问1详解】函数的单调增区间为()由,,解得,,所以的单调增区间为,【小问2详解】选择条件①:令,因为,所以所以所以,因为在区间上单调递增,所以当时,取得最大值所以当时,取得最大值选择条件②:令,因为,所以所以当时,即时,取得最大值19、(1),;(2).【解析】(1)由函数图象经过点且f(x)的图象有一条对称轴为直线,可得最大值A,且能得周期并求得ω,由五点法作图求出的值,可得函数的解析式(2)利用正弦函数的单调性求得f(x)的单调递增区间【详解】(1)函数f(x)=Asin(ωx+)(A>0,ω>0,)在一个周期内的图象经过点,,且f(x)的图象有一条对称轴为直线,故最大值A=4,且,∴,∴ω=3所以.因为的图象经过点,所以,所以,.因为,所以,所以.(2)因为,所以,,所以,,即的单调递增区间为.【点睛】本题主要考查由函数y=Asin(ωx+)的性质求解析式,通常由函数的最大值求出A,由周期求出ω,由五点法作图求出的值,考查了正弦型函数的单调性问题,属于基础题20、(1),(2)【解析】(1)根据正弦函数的性质计算可得;(2)首先求出函数取最大值时的取值集合,即可得到,再根据函数在上是减函数,且,则的最大值为内使函数值为的值,即可求出的取值范围;【小问1详解】解:对于函数,令,,求得,故函数的单调递增区间为,【小问2详解】解:令,,解得,.即时取得最大值因为当时,取到最大值,所以又函数在上是减函数,且,故的最大值为内使函数值为的值,令,即,因为,所以,所以,解得,所以的取值范围是21、(1)2或;(2)或.【解析】(1)对a值分类讨论,根据单调性列出最值之差表达式即可求解;(2)由函数的奇偶性、单调性脱去
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC TR 63534:2025 EN Integrating distributed PV into LVDC systems and use cases
- 分子生物学模拟习题含答案
- 家政服务合同与化管理推广协议
- 品牌形象代言合同书规范
- 生活用品供应链管理合作协议
- 农业技术推广与人才培养合同
- 2024中国建设银行秋季招聘考试模拟试题及答案
- 纺织品设计中的互动设计方法试题及答案
- 浙江国企招聘2025浙江金投两头乌火腿有限公司招聘5人笔试参考题库附带答案详解
- 2025福建省福规市政工程有限公司招聘5人笔试参考题库附带答案详解
- 我国食品标准体系课件
- 2MWp双模式光伏发电工程施工组织方案
- 幼儿园绘本故事:《感谢的味道》 PPT课件
- (高清版)建筑塑料复合模板工程技术规程JGJ_T 352-2014
- DBJ61∕T 190-2021 居住建筑室内装配式装修工程技术规程
- 好书推荐——《三毛流浪记》PPT通用课件
- ZPS型声控自动喷雾降尘装置说明书
- 放射性的应用与防护教案
- 医院岗位设置与人员编制标准[详]
- 中国石油天然气集团公司建设项目经济评价参数
- 每日安全巡查记录表
评论
0/150
提交评论