2023年北京市重点校初三(上)期末数学试题汇编:用频率估计概率_第1页
2023年北京市重点校初三(上)期末数学试题汇编:用频率估计概率_第2页
2023年北京市重点校初三(上)期末数学试题汇编:用频率估计概率_第3页
2023年北京市重点校初三(上)期末数学试题汇编:用频率估计概率_第4页
2023年北京市重点校初三(上)期末数学试题汇编:用频率估计概率_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1页/共1页2023北京重点校初三(上)期末数学汇编用频率估计概率一、填空题1.(2023秋·北京海淀·九年级期末)在一个不透明的口袋中装有个红球和若干个白球,它们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在附近,则估计口袋中白球大约有____个.2.(2023秋·北京海淀·九年级期末)下表记录了一名球员在罚球线上投篮的结果.投篮次数50100150200300400500投中次数284978102153208255投中频率0.560.490.520.510.510.520.51根据以上数据,估计这名球员在罚球线上投篮一次,投中的概率为______.3.(2023秋·北京东城·九年级统考期末)2022年3月12日是我国第44个植树节,某林业部门为了考察某种幼树在一定条件下的移植成活率,在同等条件下,对这种幼树进行大量移植,并统计成活情况,下表是这种幼树移植过程中的一组统计数据:幼树移植数(棵)100100050008000100001500020000幼树移植成活数(棵)878934485722489831344318044幼树移植成活的频率0.8700.8930.8970.9030.8980.8960.902估计该种幼树在此条件下移植成活的概率是______.(结果精确到0.1)4.(2023秋·北京海淀·九年级期末)社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里,装有20个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后,从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象,如图所示,经分析可以推断“摸出黑球”的概率约为_______.5.(2023秋·北京海淀·九年级期末)下表显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果.抛掷次数n300500700900110013001500170019002000“正面向上”的次数m1372333354415446507498529461004“正面向上”的频率0.4570.4660.4790.4900.4950.5000.4990.5010.4980.502估计此次实验硬币“正面向上”的概率是_______.6.(2023秋·北京海淀·九年级期末)为了解早高峰期间A,B两邻近地铁站乘客的乘车等待时间(指乘客从进站到乘上车的时间),某部门在同一上班高峰时段对A、B两地铁站各随机抽取了500名乘客,收集了其乘车等待时间(单位:分钟)的数据,统计如表:等待时的频数间乘车等待时间地铁站5≤t≤1010<t≤1515<t≤2020<t≤2525<t≤30合计A5050152148100500B452151674330500据此估计,早高峰期间,在A地铁站“乘车等待时间不超过15分钟”的概率为_____;夏老师家正好位于A,B两地铁站之间,她希望每天上班的乘车等待时间不超过20分钟,则她应尽量选择从_____地铁站上车.(填“A”或“B”)7.(2023秋·北京海淀·九年级期末)农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:下面有三个推断:①在同样的地质环境下播种,A种子的出芽率可能会高于B种子.②当实验种子数里为100时,两种种子的发芽率均为0.96所以他发芽的概率一样;③随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;其中不合理的是_____(只填序号)8.(2023秋·北京海淀·九年级期末)如图是某小组同学做“频率估计概率”的实验时,绘出的某一实验结果出现的频率折线图,则符合图中这一结果的实验可能是_______(填序号).①抛一枚质地均匀的硬币,落地时结果“正面朝上”;②在“石头,剪刀,布”的游戏中,小明随机出的是剪刀;③四张一样的卡片,分别标有数字1,2,3,4,从中随机取出一张,数字是1.

参考答案1.【分析】由摸到红球的频率稳定在附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】解:设白球个数为个∵摸到红球的频率稳定在0.25附近∴口袋中得到红色球的概率为0.25∴解得:经检验,符合题意即白球的个数为15个故答案为:15【点睛】本题考查了利用频率估计概率,解题关键是大量反复试验下频率稳定值即概率.2.0.51(答案不唯一)【分析】根据频率估计概率的方法结合表格数据可得答案.【详解】解:由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.51附近,∴这名球员在罚球线上投篮一次,投中的概率为0.51,故答案为:0.51(答案不唯一).【点睛】此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.3.0.9【分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【详解】∵幼树移植数20000时,幼树移植成活的频率是0.902,∴估计该种幼树在此条件下移植成活的概率为0.902,精确到0.1,即为0.9,故答案为:0.9.【点睛】本题考查了用大量试验得到的频率可以估计事件的概率,大量反复试验下频率稳定值即概率.4.【分析】根据“摸出黑球的频率”与“摸球的总次数”的关系图象,即可得出“摸出黑球”的概率.【详解】解:由图可知,摸出黑球的概率约为0.2,故答案为:0.2.【点睛】本题主要考查用频率估计概率,需要注意的是试验次数要足够大,次数太少时不能估计概率.5.【分析】利用频率估算概率.【详解】∵由表格可得:随着抛掷次数的增多,出现正面向上的频率越来越接近0.5,∴“正面向上”的概率为.故答案为:.【点睛】考查了频率和概率的定义以及它们之间的相互关系,解题关键是理解在相同的条件下做大量重复试验,一个事件A出现的次数和总的试验次数n之比,称为事件A在这n次试验中出现的频率.当试验次数n很大时,频率将稳定在一个常数附近.n越大,频率偏离这个常数较大的可能性越小.这个常数称为这个事件的概率.6.B【分析】用“用时不超过15分钟”的人数除以总人数即可求得概率;先分别求出A线路不超过20分钟的人数和B线路不超过20分钟的人数,再进行比较即可得出答案.【详解】∵在A地铁站“乘车等待时间不超过15分钟有50+50=100人,∴在A地铁站“乘车等待时间不超过15分钟”的概率为=,∵A线路不超过20分钟的有50+50+152=252人,B线路不超过20分钟的有45+215+167=427人,∴选择B线路,故答案为:,B.【点睛】此题考查了用频率估计概率的知识,能够读懂图是解答本题的关键,难度不大;用到的知识点为:概率=所求情况数与总情况数之比.7.②.【分析】大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率,据此解答可得.【详解】①在同样的地质环境下播种,A种子的出芽率约为0.98、B种子的出芽率约为0.97,可能会高于B种子,故①合理;②在大量重复试验时,随着试验次数的增加,可以用一个事件出现的概率估计它的概率,实验种子数量为100,数量太少,不可用于估计概率,故②推断不合理.③随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98,故推断合理.故答案为:②.【点睛】本题考查了概率的意义,大量反复试验下频率稳定值即概率.注意随机事件发生的概率在0和1之间.8.②【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的频率,约为0.33者即为正确答案.【详解】抛一枚硬币,出现正面朝上的频率是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论