




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年华师大版高一数学下册阶段测试试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共6题,共12分)1、三个数a=0.92,b=ln0.9,c=20.9之间的大小关系是()
A.a<c<b
B.a<b<c
C.b<a<c
D.b<c<a
2、【题文】长方体的三个相邻面的面积分别是这个长方体的顶点都在同一个球面上,则这个球的表面积为()A.B.C.D.3、【题文】若集合A={x|-1≤2x+1≤3},B=则A∩B=()A.{x|-1≤x<0}B.{x|0C.{x|0≤x≤2}D.{x|0≤x≤1}4、下列说法正确的是()A.函数y=f(x)的图象与直线x=a可能有两个交点B.函数y=log2x2与函数y=2log2x是同一函数C.对于[a,b]上的函数y=f(x),若有f(a)•f(b)<0,那么函数y=f(x)在(a,b)内有零点D.对于指数函数y=ax(a>1)与幂函数y=xn(n>0),总存在一个x0,当x>x0时,就会有ax>xn5、函数的单调递减区间是()A.(1,2)B.C.D.6、设向量满足:||=1,||=2,•=1,则与的夹角是()A.30°B.60°C.90°D.120°评卷人得分二、填空题(共9题,共18分)7、已知+4z+4=0,则x+y+z=____.8、已知△ABC中则cosC的值为9、函数的最小值为____.10、若满足设则的取值范围是11、【题文】已知某种产品今年产量为1000件,若计划从明年开始每年的产量比上一年增长10%,则3年后的产量为________件.12、【题文】函数f(x)=mx2+(2m-1)x+1是偶函数,则实数m=________.13、【题文】已知则的最小值为____;14、已知函数f(x)的定义域为R;且f(x)不为常值函数,有以下命题:①函数g(x)=f(x)+f(﹣x)一定是偶函数;
②若对任意x∈R都有f(x)+f(2﹣x)=0;则f(x)是以2为周期的周期函数;
③若f(x)是奇函数;且对于任意x∈R,都有f(x)+f(2+x)=0,则f(x)的图象的对称轴方程为x=2n+1(n∈Z);
④对于任意的x1,x2∈R,且x1≠x2,若>0恒成立;则f(x)为R上的增函数;
其中所有正确命题的序号是____.15、一个半径为R的扇形,它的周长为4R,则这个扇形所含弓形的面积为______.评卷人得分三、证明题(共9题,共18分)16、AB是圆O的直径,CD是圆O的一条弦,AB与CD相交于E,∠AEC=45°,圆O的半径为1,求证:EC2+ED2=2.17、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.18、已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD.19、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.20、如图;已知AB是⊙O的直径,P是AB延长线上一点,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求证:
(1)AD=AE
(2)PC•CE=PA•BE.21、初中我们学过了正弦余弦的定义,例如sin30°=,同时也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根据如图,设计一种方案,解决问题:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,设AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面积S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.22、已知D是锐角△ABC外接圆劣弧的中点;弦AD与边BC相交于点E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.23、已知G是△ABC的重心,过A、G的圆与BG切于G,CG的延长线交圆于D,求证:AG2=GC•GD.24、已知ABCD四点共圆,AB与DC相交于点E,AD与BC交于F,∠E的平分线EX与∠F的平分线FX交于X,M、N分别是AC与BD的中点,求证:(1)FX⊥EX;(2)FX、EX分别平分∠MFN与∠MEN.评卷人得分四、解答题(共3题,共24分)25、已知函数f(x)=logax,g(x)=x,h(x)=ax.
(1)若a=2;设m(x)=h(x)-g(x),n(x)=g(x)-f(x),当x>1时,试比较m(x)与n(x)的大小(只需要写出结果,不必证明);
(2)若设P是函数g(x)图象在第一象限上的一个动点,过点P作平行于x轴的直线。
与函数h(x)和f(x)的图象分别交于A;B两点;过点P作平行于y轴的直线与函数h(x)和f(x)的图象分别交于C、D两点,求证:|AB|=|CD|.
26、已知△ABC的顶点A(0;1),AB边上的中线CD所在的直线方程为2x-2y-1=0,AC边上的高BH所在直线的方程为y=0.
(1)求△ABC的顶点B;C的坐标;
(2)若圆M经过A;B且与直线x-y+3=0相切于点P(-3,0),求圆M的方程.
27、【题文】已知关于x的二次方程x2+2mx+2m+1=0.
(1)若方程有两根;其中一根在区间(-1,0)内,另一根在区间(1,2)内,求实数m的取值范围;
(2)若方程两根均在区间(0,1)内,求实数m的取值范围.评卷人得分五、计算题(共1题,共7分)28、如果菱形有一个角是45°,且边长是2,那么这个菱形两条对角线的乘积等于____.参考答案一、选择题(共6题,共12分)1、C【分析】
由题,因为ln0.9<0<0.92<1<20.9
∴b<a<c
故选C
【解析】【答案】由题意;可确定出三个数的取值范围,找出中间量,从而得出三数的大小,找出正确选项。
2、C【分析】【解析】
试题分析:设长方体的一个顶点上的三条棱长分别为则所以于是而它的8个顶点都在同一个球面上,所以长方体的对角线就是球的直径,长方体的体对角线的长是=所以球的半径是这个球的表面积为故选C.
考点:1.空间几何体的表面积;2.球的内接多面体的问题.【解析】【答案】C3、B【分析】【解析】
试题分析:由于A={x|-1≤2x+1≤3}={x|-1≤x≤1};
B=所以A∩B={x|0
考点:集合的运算.【解析】【答案】B4、D【分析】【解答】A:函数y=f(x)中;对每一个x值,只能有唯一的y与之对应;
∴函数y=f(x)的图象与平行于y轴的直线最多只能有一个交点.(A)就不对了.
B:由于两个函数的定义域不同;故不是同一个函数,错;
C:根据零点存在性定理知,要求函数f(x)在区间[a,b]上连续才行;故其不正确;
故选D.
【分析】对于A:函数是特殊的映射;对每一个x值,只能有唯一的y与之对应,函数y=f(x)的图象也是.
对于B:从函数的定义域出发考虑即可;
对于C:注意应用零点存在性定理的条件;
对于D:从对数函数、指数函数与幂函数的增长差异角度考虑即可.5、B【分析】【分析】因为由已知可知函数的定义域为而外层函数是定义域内的减函数,要求解函数的单调减区间,只要求解内层的增区间即可,而对于内层的在上递增;故利用复合函数的同增异减,得到答案为B.
【点评】解决该试题的易错点就是对于定义域的忽略求解,以及复合函数的判定法则的熟练程度,是考查了分析和解决问题的能力。6、B【分析】解:向量满足:||=1,||=2,•=1;
可得•=||||cos<>=2cos<>=1;
可得cos<>=
<>=60°.
故选:B.
利用向量的数量积;通过三角函数的化简求解即可.
本题考查平面向量的数量积的运算,向量的夹角的求法,考查计算能力.【解析】【答案】B二、填空题(共9题,共18分)7、略
【分析】【分析】根据非负数的性质,可求出x、y、z的值,然后再代值计算.【解析】【解答】解:∵+4z+4=0;
∴x-3=0;x-y+2010=0,z+2=0;
解得x=3;y=2013,z=-2.
则x+y+z=3+2013-2=2014.
故答案为:2014.8、略
【分析】试题分析:由正弦定理及知,=3:2:4,即设=k,所以所以===考点:正弦定理;余弦定理【解析】【答案】9、略
【分析】【解析】试题分析:∵∴当即时,函数有最小值为-2考点:本题考查了三角函数的化简及值域【解析】【答案】-210、略
【分析】【解析】【答案】11、略
【分析】【解析】1000×(1+10%)3=1331.【解析】【答案】133112、略
【分析】【解析】由f(-x)=f(x),知m=【解析】【答案】13、略
【分析】【解析】
试题分析:根据已知条件可知,那么对于显然只有这样才能满足方程的解,那么对于这样的x的取值分析可知,的最小值为12.
考点:本试题考查了集合的包含关系的运用。
点评:解决该试题的关键是理解已知中集合给定的包含关系中隐含着对于不等式成立的x的取值问题,我们通过数值法举例说明得到最小的值,属于难度试题。【解析】【答案】1214、①③④【分析】【解答】解:∵g(﹣x)=f(﹣x)+f(x)=g(x),故函数g(x)=f(x)+f(﹣x)一定是偶函数,故①正确;②若对任意x∈R都有f(x)+f(2﹣x)=0,则f(x)的图象关于点(1,0)对称,但不一定是周期函数,故错误;③若f(x)是奇函数,且对于任意x∈R,都有f(x)+f(2+x)=0,则函数的周期为4,则f(x)的图象的对称轴方程为x=2n+1(n∈Z),故正确;④对于任意的x1,x2∈R,且x1≠x2,若>0恒成立;则f(x)为R上的增函数,故正确,故答案为:①③④
【分析】根据函数奇偶性的定义,可判断①;根据已知分析函数的对称性,可判断②;根据已知分析出函数的周期性和对称性,可判断③;根据已知分析出函数的单调性,可判断④15、略
【分析】解:一个半径为R的扇形,它的周长为4R,所以弧长是:2R,圆心角是:2;扇形的面积是:=R2.三角形的面积是:=
所以这个扇形所含弓形的面积为:.
故答案为:
通过扇形的周长;求出扇形的弧长以及圆心角,然后求出扇形的面积,三角形的面积,即可得到这个扇形所含弓形的面积.
本题是基础题,考查扇形面积的求法,弓形面积的求法,考查计算能力,计算量比较小,送分题.【解析】三、证明题(共9题,共18分)16、略
【分析】【分析】首先作CD关于AB的对称直线FG,由∠AEC=45°,即可证得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易证得O,C,G,E四点共圆,则可求得CG2=OC2+OG2=2.继而证得EC2+ED2=2.【解析】【解答】证明:作CD关于AB的对称直线FG;
∵∠AEC=45°;
∴∠AEF=45°;
∴CD⊥FG;
∴CG2=CE2+EG2;
即CG2=CE2+ED2;
∵△OCD≌△OGF(SSS);
∴∠OCD=∠OGF.
∴O;C,G,E四点共圆.
∴∠COG=∠CEG=90°.
∴CG2=OC2+OG2=2.
∴EC2+ED2=2.17、略
【分析】【分析】(1)求出∠BAD=∠CAD,根据角平分线性质推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根据等腰三角形性质求出AF=CF,根据三角函数的定义求出即可;
(3)BF过圆心O,作OM⊥BC于M,求出BF,根据锐角三角函数的定义求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F为AC中点;
∴cosC==.
答:cosC的值是.
(3)BF过圆心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.18、略
【分析】【分析】构造以重心G为顶点的平行四边形GBFC,并巧用A、D、F、C四点共圆巧证乘积.延长GP至F,使PF=PG,连接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四边形,故GF=2GP.从而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四点共圆,从而GA、GF=GC•GD.于是GA2=GC•GD.【解析】【解答】证明:延长GP至F;使PF=PG,连接AD,BF,CF;
∵G是△ABC的重心;
∴AG=2GP;BP=PC;
∵PF=PG;
∴四边形GBFC是平行四边形;
∴GF=2GP;
∴AG=GF;
∵BG∥CF;
∴∠1=∠2
∵过A;G的圆与BG切于G;
∴∠3=∠D;
又∠2=∠3;
∴∠1=∠2=∠3=∠D;
∴A;D、F、C四点共圆;
∴GA;GF=GC•GD;
即GA2=GC•GD.19、略
【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;
由图知:∠FDC是△ACD的一个外角;
则有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四边形ABCD是圆的内接四边形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分别是∠AFB、∠AED的角平分线;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)连接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可证得∠NEX=∠MEX;
故FX、EX分别平分∠MFN与∠MEN.20、略
【分析】【分析】(1)连AC;BC;OC,如图,根据切线的性质得到OC⊥PD,而AD⊥PC,则OC∥PD,得∠ACO=∠CAD,则∠DAC=∠CAO,根据三角形相似的判定易证得Rt△ACE≌Rt△ACD;
即可得到结论;
(2)根据三角形相似的判定易证Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到结论.【解析】【解答】证明:(1)连AC、BC,OC,如图,
∵PC是⊙O的切线;
∴OC⊥PD;
而AD⊥PC;
∴OC∥PD;
∴∠ACO=∠CAD;
而∠ACO=∠OAC;
∴∠DAC=∠CAO;
又∵CE⊥AB;
∴∠AEC=90°;
∴Rt△ACE≌Rt△ACD;
∴CD=CE;AD=AE;
(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;
∴Rt△PCE∽Rt△PAD;
∴PC:PA=CE:AD;
又∵AB为⊙O的直径;
∴∠ACB=90°;
而∠DAC=∠CAO;
∴Rt△EBC∽Rt△DCA;
∴BE:CE=CD:AD;
而CD=CE;
∴BE:CE=CE:AD;
∴BE:CE=PC:PA;
∴PC•CE=PA•BE.21、略
【分析】【分析】(1)过点C作CE⊥AB于点E;根据正弦的定义可以表示出CE的长度,然后利用三角形的面积公式列式即可得解;
(2)根据S△ABC=S△ABD+S△ACD列式,然后根据正弦与余弦的定义分别把BD、AD、CD,AB,AC转化为三角形函数,代入整理即可得解.【解析】【解答】解:(1)过点C作CE⊥AB于点E;
则CE=AC•sin(α+β)=bsin(α+β);
∴S=AB•CE=c•bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根据题意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB•ACsin(α+β)=BD•AD+CD•AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.22、略
【分析】【分析】(1)求出∠BAD=∠CAD,根据角平分线性质推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根据等腰三角形性质求出AF=CF,根据三角函数的定义求出即可;
(3)BF过圆心O,作OM⊥BC于M,求出BF,根据锐角三角函数的定义求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F为AC中点;
∴cosC==.
答:cosC的值是.
(3)BF过圆心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.23、略
【分析】【分析】构造以重心G为顶点的平行四边形GBFC,并巧用A、D、F、C四点共圆巧证乘积.延长GP至F,使PF=PG,连接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四边形,故GF=2GP.从而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四点共圆,从而GA、GF=GC•GD.于是GA2=GC•GD.【解析】【解答】证明:延长GP至F;使PF=PG,连接AD,BF,CF;
∵G是△ABC的重心;
∴AG=2GP;BP=PC;
∵PF=PG;
∴四边形GBFC是平行四边形;
∴GF=2GP;
∴AG=GF;
∵BG∥CF;
∴∠1=∠2
∵过A;G的圆与BG切于G;
∴∠3=∠D;
又∠2=∠3;
∴∠1=∠2=∠3=∠D;
∴A;D、F、C四点共圆;
∴GA;GF=GC•GD;
即GA2=GC•GD.24、略
【分析】【分析】(1)在△FDC中;由三角形的外角性质知∠FDC=∠FAE+∠AED①,同理可得∠EBC=∠FAE+∠AFB②;由于四边形ABCD内接于圆,则∠FDC=∠ABC,即∠FDC+∠EBC=180°,联立①②,即可证得∠AFB+∠AED+2∠FAE=180°,而FX;EX分别是∠AFB和∠AED的角平分线,等量代换后可证得∠AFX+∠AEX+∠FAE=90°;可连接AX,此时发现∠FXE正好是∠AFX、∠AEX、∠FAE的和,由此可证得∠FXE是直角,即FX⊥EX;
(2)由已知易得∠AFX=∠BFX,欲证∠MFX=∠NFX,必须先证得∠AFM=∠BFN,可通过相似三角形来实现;首先连接FM、FN,易证得△FCA∽△FDB,可得到FA:FB=AC:BD,而AC=2AM,BD=2BN,通过等量代换,可求得FA:FB=AM:BN,再加上由圆周角定理得到的∠FAM=∠FBN,即可证得△FAM∽△FBN,由此可得到∠AFM=∠BFN,进一步可证得∠MFX=∠NFX,即FX平分∠MFN,同理可证得EX是∠MEN的角平分线.【解析】【解答】证明:(1)连接AX;
由图知:∠FDC是△ACD的一个外角;
则有:∠FDC=∠FAE+∠AED;①
同理;得:∠EBC=∠FAE+∠AFB;②
∵四边形ABCD是圆的内接四边形;
∴∠FDC=∠ABC;
又∵∠ABC+∠EBC=180°;即:∠FDC+∠EBC=180°;③
①+②;得:∠FDC+∠EBC=2∠FAE+(∠AED+∠AFB);
由③;得:2∠FAE+(∠AED+∠AFB)=180°;
∵FX;EX分别是∠AFB、∠AED的角平分线;
∴∠AFB=2∠AFX;∠AED=2∠AEX,代入上式得:
2∠FAE+2(∠AFX+∠AEX)=180°;
即∠FAE+∠AFX+∠AEX=180°;
由三角形的外角性质知:∠FXE=∠FAE+∠FAX+∠EAX;
故FXE=90°;即FX⊥EX.
(2)连接MF;FN;ME、NE;
∵∠FAC=∠FBD;∠DFB=∠CFA;
∴△FCA∽△FDB;
∴;
∵AC=2AM;BD=2BN;
∴;
又∵∠FAM=∠FBN;
∴△FAM∽△FBNA;得∠AFM=∠BFN;
又∵∠AFX=∠BFX;
∴∠AFX-∠AFM=∠BFX-∠BFN;即∠MFX=∠NFX;
同理可证得∠NEX=∠MEX;
故FX、EX分别平分∠MFN与∠MEN.四、解答题(共3题,共24分)25、略
【分析】
(1)大小关系:m(x)>n(x)
(2)由点P在直线g(x)=x上;设P(t,t),(t>0)
由得x=-log2t,∴A(-log2t;t);
由得.∴.(5分)
∵D(t,-log2t),∴.
∴|AB|=|CD|.(7分)
【解析】【答案】(1)大小关系:m(x)>n(x).
(2)设P(t;t),(t>0),分别求出A;B、C、D坐标,再利用两点距离公式计算证明.
26、略
【分析】
(1)∵AC边上的高BH所在直线的方程为y=0;即为x轴;
∴直线AC的方程为y轴;即为直线x=0,又直线CD:2x-2y-1=0;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论