北京市顺义区市级名校2025届高三下学期第三次月考(期中)数学试题_第1页
北京市顺义区市级名校2025届高三下学期第三次月考(期中)数学试题_第2页
北京市顺义区市级名校2025届高三下学期第三次月考(期中)数学试题_第3页
北京市顺义区市级名校2025届高三下学期第三次月考(期中)数学试题_第4页
北京市顺义区市级名校2025届高三下学期第三次月考(期中)数学试题_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市顺义区市级名校2025届高三下学期第三次月考(期中)数学试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.复数(i为虚数单位)的共轭复数是A.1+i B.1−i C.−1+i D.−1−i2.是虚数单位,则()A.1 B.2 C. D.3.已知是函数图象上的一点,过作圆的两条切线,切点分别为,则的最小值为()A. B. C.0 D.4.设函数定义域为全体实数,令.有以下6个论断:①是奇函数时,是奇函数;②是偶函数时,是奇函数;③是偶函数时,是偶函数;④是奇函数时,是偶函数⑤是偶函数;⑥对任意的实数,.那么正确论断的编号是()A.③④ B.①②⑥ C.③④⑥ D.③④⑤5.已知是虚数单位,若,则()A. B.2 C. D.106.设过定点的直线与椭圆:交于不同的两点,,若原点在以为直径的圆的外部,则直线的斜率的取值范围为()A. B.C. D.7.若干年前,某教师刚退休的月退休金为6000元,月退休金各种用途占比统计图如下面的条形图.该教师退休后加强了体育锻炼,目前月退休金的各种用途占比统计图如下面的折线图.已知目前的月就医费比刚退休时少100元,则目前该教师的月退休金为().A.6500元 B.7000元 C.7500元 D.8000元8.已知函数,为图象的对称中心,若图象上相邻两个极值点,满足,则下列区间中存在极值点的是()A. B. C. D.9.金庸先生的武侠小说《射雕英雄传》第12回中有这样一段情节,“……洪七公道:肉只五种,但猪羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有几般变化,我可算不出了”.现有五种不同的肉,任何两种(含两种)以上的肉混合后的滋味都不一样,则混合后可以组成的所有不同的滋味种数为()A.20 B.24 C.25 D.2610.的展开式中,满足的的系数之和为()A. B. C. D.11.设,,则()A. B.C. D.12.如图所示的程序框图输出的是126,则①应为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为______.14.若,则的最小值为________.15.已知,,,则的最小值是__.16.若x5=a0+a1(x-2)+a2(x-2)2+…+a5(x-2)5,则a1=_____,a1+a2+…+a5=____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知点和椭圆.直线与椭圆交于不同的两点,.(1)当时,求的面积;(2)设直线与椭圆的另一个交点为,当为中点时,求的值.18.(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程及曲线的直角坐标方程;(2)设点,直线与曲线交于两点,求的值.19.(12分)已知函数f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)对任意,都有恒成立,求实数a的取值范围;(3)证明:对一切,都有成立.20.(12分)如图,在正三棱柱中,,,分别为,的中点.(1)求证:平面;(2)求平面与平面所成二面角锐角的余弦值.21.(12分)在中,角,,所对的边分别为,,,且.求的值;设的平分线与边交于点,已知,,求的值.22.(10分)已知数列满足且(1)求数列的通项公式;(2)求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:化简已知复数z,由共轭复数的定义可得.详解:化简可得z=∴z的共轭复数为1﹣i.故选B.点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题.2、C【解析】

由复数除法的运算法则求出,再由模长公式,即可求解.【详解】由.故选:C.【点睛】本题考查复数的除法和模,属于基础题.3、C【解析】

先画出函数图像和圆,可知,若设,则,所以,而要求的最小值,只要取得最大值,若设圆的圆心为,则,所以只要取得最小值,若设,则,然后构造函数,利用导数求其最小值即可.【详解】记圆的圆心为,设,则,设,记,则,令,因为在上单调递增,且,所以当时,;当时,,则在上单调递减,在上单调递增,所以,即,所以(当时等号成立).故选:C【点睛】此题考查的是两个向量的数量积的最小值,利用了导数求解,考查了转化思想和运算能力,属于难题.4、A【解析】

根据函数奇偶性的定义即可判断函数的奇偶性并证明.【详解】当是偶函数,则,所以,所以是偶函数;当是奇函数时,则,所以,所以是偶函数;当为非奇非偶函数时,例如:,则,,此时,故⑥错误;故③④正确.故选:A【点睛】本题考查了函数的奇偶性定义,掌握奇偶性定义是解题的关键,属于基础题.5、C【解析】

根据复数模的性质计算即可.【详解】因为,所以,,故选:C【点睛】本题主要考查了复数模的定义及复数模的性质,属于容易题.6、D【解析】

设直线:,,,由原点在以为直径的圆的外部,可得,联立直线与椭圆方程,结合韦达定理,即可求得答案.【详解】显然直线不满足条件,故可设直线:,,,由,得,,解得或,,,,,,解得,直线的斜率的取值范围为.故选:D.【点睛】本题解题关键是掌握椭圆的基础知识和圆锥曲线与直线交点问题时,通常用直线和圆锥曲线联立方程组,通过韦达定理建立起目标的关系式,考查了分析能力和计算能力,属于中档题.7、D【解析】

设目前该教师的退休金为x元,利用条形图和折线图列出方程,求出结果即可.【详解】设目前该教师的退休金为x元,则由题意得:6000×15%﹣x×10%=1.解得x=2.故选D.【点睛】本题考查由条形图和折线图等基础知识解决实际问题,属于基础题.8、A【解析】

结合已知可知,可求,进而可求,代入,结合,可求,即可判断.【详解】图象上相邻两个极值点,满足,即,,,且,,,,,,当时,为函数的一个极小值点,而.故选:.【点睛】本题主要考查了正弦函数的图象及性质的简单应用,解题的关键是性质的灵活应用.9、D【解析】

利用组合的意义可得混合后所有不同的滋味种数为,再利用组合数的计算公式可得所求的种数.【详解】混合后可以组成的所有不同的滋味种数为(种),故选:D.【点睛】本题考查组合的应用,此类问题注意实际问题的合理转化,本题属于容易题.10、B【解析】

,有,,三种情形,用中的系数乘以中的系数,然后相加可得.【详解】当时,的展开式中的系数为.当,时,系数为;当,时,系数为;当,时,系数为;故满足的的系数之和为.故选:B.【点睛】本题考查二项式定理,掌握二项式定理和多项式乘法是解题关键.11、D【解析】

由不等式的性质及换底公式即可得解.【详解】解:因为,,则,且,所以,,又,即,则,即,故选:D.【点睛】本题考查了不等式的性质及换底公式,属基础题.12、B【解析】试题分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+…+2n的值,并输出满足循环的条件.解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加S=2+22+…+2n的值,并输出满足循环的条件.∵S=2+22+…+21=121,故①中应填n≤1.故选B点评:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

对函数求导,得出在处的一阶导数值,即得出所求切线的斜率,再运用直线的点斜式求出切线的方程.【详解】令,,所以,又,所求切线方程为,即.故答案为:.【点睛】本题考查运用函数的导函数求函数在切点处的切线方程,关键在于求出在切点处的导函数值就是切线的斜率,属于基础题.14、【解析】

由基本不等式,可得到,然后利用,可得到最小值,要注意等号取得的条件。【详解】由题意,,当且仅当时等号成立,所以,当且仅当时取等号,所以当时,取得最小值.【点睛】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件。15、.【解析】

因为,展开后利用基本不等式,即可得到本题答案.【详解】由,得,所以,当且仅当,取等号.故答案为:【点睛】本题主要考查利用基本不等式求最值,考查学生的转化能力和运算求解能力.16、80211【解析】

由,利用二项式定理即可得,分别令、后,作差即可得.【详解】由题意,则,令,得,令,得,故.故答案为:80,211.【点睛】本题考查了二项式定理的应用,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】

(1)联立直线的方程和椭圆方程,求得交点的横坐标,由此求得三角形的面积.(2)法一:根据的坐标求得的坐标,将的坐标都代入椭圆方程,化简后求得的坐标,进而求得的值.法二:设出直线的方程,联立直线的方程和椭圆的方程,化简后写出根与系数关系,结合求得点的坐标,进而求得的值.【详解】(1)设,,若,则直线的方程为,由,得,解得,,设直线与轴交于点,则且.(2)法一:设点因为,,所以又点,都在椭圆上,所以解得或所以或.法二:设显然直线有斜率,设直线的方程为由,得所以又解得或所以或所以或.【点睛】本小题主要考查直线和椭圆的位置关系,考查椭圆中三角形面积的求法,考查运算求解能力,属于中档题.18、(1);(2)【解析】

(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用(1)的结论,进一步利用一元二次方程根和系数的关系式的应用求出结果.【详解】解:(1)直线的参数方程为(为参数),转换为直角坐标方程为.曲线的极坐标方程为.转换为,转换为直角坐标方程为.(2)直线的参数方程为(为参数),转换为标准式为(为参数),代入圆的直角坐标方程整理得,所以,..【点睛】本题属于基础本题考查的知识要点:主要考查极坐标,参数方程与普通方程互化,及求三角形面积.需要熟记极坐标系与参数方程的公式,及与解析几何相关的直线与曲线位置关系的一些解题思路.19、(1)(2)((3)见证明【解析】

(1)先求函数导数,再求导函数零点,列表分析导函数符号变化规律确定函数单调性,最后根据函数单调性确定最小值取法;(2)先分离不等式,转化为对应函数最值问题,利用导数求对应函数最值即得结果;(3)构造两个函数,再利用两函数最值关系进行证明.【详解】(1)当时,单调递减,当时,单调递增,所以函数f(x)的最小值为f()=;(2)因为所以问题等价于在上恒成立,记则,因为,令函数f(x)在(0,1)上单调递减;函数f(x)在(1,+)上单调递增;即,即实数a的取值范围为(.(3)问题等价于证明由(1)知道,令函数在(0,1)上单调递增;函数在(1,+)上单调递减;所以{,因此,因为两个等号不能同时取得,所以即对一切,都有成立.【点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究,就不要使用分离参数法.20、(1)证明见详解;(2).【解析】

(1)取中点为,通过证明//,进而证明线面平行;(2)取中点为,以为坐标原点建立直角坐标系,求得两个平面的法向量,用向量法解得二面角的大小.【详解】(1)证明:取的中点,连结,,如下图所示:在中,因为为的中点,,且,又为的中点,,,且,,且,四边形为平行四边形,又平面,平面,平面,即证.(2)取中点,连结,,则,平面,以为原点,分别以,,为,,轴,建立空间直角坐标系,如下图所示:则,,,,,,,,设平面的一个法向量,则,则,令.则,同理得平面的一个法向量为,则,故平面与平面所成二面角(锐角)的余弦值为.【点睛】本题考查由线线平行推证线面平行,以及利用向量法求解二面角的大小,属综合中档题.21、;.【解析】

利用正弦定理化简求值即可;利用两角和差的正弦函数的化简公式,结合正

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论