2025届湖北省宜昌第二中学高三下期第二次模拟考试数学试题文试题_第1页
2025届湖北省宜昌第二中学高三下期第二次模拟考试数学试题文试题_第2页
2025届湖北省宜昌第二中学高三下期第二次模拟考试数学试题文试题_第3页
2025届湖北省宜昌第二中学高三下期第二次模拟考试数学试题文试题_第4页
2025届湖北省宜昌第二中学高三下期第二次模拟考试数学试题文试题_第5页
已阅读5页,还剩11页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖北省宜昌第二中学高三下期第二次模拟考试数学试题文试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数是纯虚数,则实数的值为()A.或 B. C. D.或2.已知双曲线:的左、右两个焦点分别为,,若存在点满足,则该双曲线的离心率为()A.2 B. C. D.53.已知函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是()A. B. C. D.4.已知椭圆的焦点分别为,,其中焦点与抛物线的焦点重合,且椭圆与抛物线的两个交点连线正好过点,则椭圆的离心率为()A. B. C. D.5.已知,,则()A. B. C. D.6.如图网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则该几何体的所有棱中最长棱的长度为()A. B. C. D.7.已知双曲线的渐近线方程为,且其右焦点为,则双曲线的方程为()A. B. C. D.8.已知向量,,若,则()A. B. C. D.9.已知函数,则在上不单调的一个充分不必要条件可以是()A. B. C.或 D.10.一个正三棱柱的正(主)视图如图,则该正三棱柱的侧面积是()A.16 B.12 C.8 D.611.函数的图象大致是()A. B.C. D.12.已知复数z,则复数z的虚部为()A. B. C.i D.i二、填空题:本题共4小题,每小题5分,共20分。13.已知,,且,则最小值为__________.14.已知复数,且满足(其中为虚数单位),则____.15.小李参加有关“学习强国”的答题活动,要从4道题中随机抽取2道作答,小李会其中的三道题,则抽到的2道题小李都会的概率为_____.16.已知,则展开式的系数为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知;.(1)若为真命题,求实数的取值范围;(2)若为真命题且为假命题,求实数的取值范围.18.(12分)在△ABC中,分别为三个内角A、B、C的对边,且(1)求角A;(2)若且求△ABC的面积.19.(12分)在平面直角坐标系中,为直线上动点,过点作抛物线:的两条切线,,切点分别为,,为的中点.(1)证明:轴;(2)直线是否恒过定点?若是,求出这个定点的坐标;若不是,请说明理由.20.(12分)设函数.(1)解不等式;(2)记的最大值为,若实数、、满足,求证:.21.(12分)在平面直角坐标系中,已知向量,,其中.(1)求的值;(2)若,且,求的值.22.(10分)已知函数.⑴当时,求函数的极值;⑵若存在与函数,的图象都相切的直线,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】试题分析:因为复数是纯虚数,所以且,因此注意不要忽视虚部不为零这一隐含条件.考点:纯虚数2.B【解析】

利用双曲线的定义和条件中的比例关系可求.【详解】.选B.【点睛】本题主要考查双曲线的定义及离心率,离心率求解时,一般是把已知条件,转化为a,b,c的关系式.3.D【解析】

由题,得,由的图象与直线的两个相邻交点的距离等于,可得最小正周期,从而求得,得到函数的解析式,又因为当时,,由此即可得到本题答案.【详解】由题,得,因为的图象与直线的两个相邻交点的距离等于,所以函数的最小正周期,则,所以,当时,,所以是函数的一条对称轴,故选:D【点睛】本题主要考查利用和差公式恒等变形,以及考查三角函数的周期性和对称性.4.B【解析】

根据题意可得易知,且,解方程可得,再利用即可求解.【详解】易知,且故有,则故选:B【点睛】本题考查了椭圆的几何性质、抛物线的几何性质,考查了学生的计算能力,属于中档题5.D【解析】

分别解出集合然后求并集.【详解】解:,故选:D【点睛】考查集合的并集运算,基础题.6.C【解析】

利用正方体将三视图还原,观察可得最长棱为AD,算出长度.【详解】几何体的直观图如图所示,易得最长的棱长为故选:C.【点睛】本题考查了三视图还原几何体的问题,其中利用正方体作衬托是关键,属于基础题.7.B【解析】试题分析:由题意得,,所以,,所求双曲线方程为.考点:双曲线方程.8.A【解析】

利用平面向量平行的坐标条件得到参数x的值.【详解】由题意得,,,,解得.故选A.【点睛】本题考查向量平行定理,考查向量的坐标运算,属于基础题.9.D【解析】

先求函数在上不单调的充要条件,即在上有解,即可得出结论.【详解】,若在上不单调,令,则函数对称轴方程为在区间上有零点(可以用二分法求得).当时,显然不成立;当时,只需或,解得或.故选:D.【点睛】本题考查含参数的函数的单调性及充分不必要条件,要注意二次函数零点的求法,属于中档题.10.B【解析】

根据正三棱柱的主视图,以及长度,可知该几何体的底面正三角形的边长,然后根据矩形的面积公式,可得结果.【详解】由题可知:该几何体的底面正三角形的边长为2所以该正三棱柱的三个侧面均为边长为2的正方形,所以该正三棱柱的侧面积为故选:B【点睛】本题考查正三棱柱侧面积的计算以及三视图的认识,关键在于求得底面正三角形的边长,掌握一些常见的几何体的三视图,比如:三棱锥,圆锥,圆柱等,属基础题.11.B【解析】

根据函数表达式,把分母设为新函数,首先计算函数定义域,然后求导,根据导函数的正负判断函数单调性,对应函数图像得到答案.【详解】设,,则的定义域为.,当,,单增,当,,单减,则.则在上单增,上单减,.选B.【点睛】本题考查了函数图像的判断,用到了换元的思想,简化了运算,同学们还可以用特殊值法等方法进行判断.12.B【解析】

利用复数的运算法则、虚部的定义即可得出【详解】,则复数z的虚部为.故选:B.【点睛】本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】

首先整理所给的代数式,然后结合均值不等式的结论即可求得其最小值.【详解】,结合可知原式,且,当且仅当时等号成立.即最小值为.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.14.【解析】

计算出,两个复数相等,实部与实部相等,虚部与虚部相等,列方程组求解.【详解】,所以,所以.故答案为:-8【点睛】此题考查复数的基本运算和概念辨析,需要熟练掌握复数的运算法则.15.【解析】

从四道题中随机抽取两道共6种情况,抽到的两道全都会的情况有3种,即可得到概率.【详解】由题:从从4道题中随机抽取2道作答,共有种,小李会其中的三道题,则抽到的2道题小李都会的情况共有种,所以其概率为.故答案为:【点睛】此题考查根据古典概型求概率,关键在于根据题意准确求出基本事件的总数和某一事件包含的基本事件个数.16.【解析】

先根据定积分求出的值,再用二项展开式公式即可求解.【详解】因为所以的通项公式为当时,当时,故展开式中的系数为故答案为:【点睛】此题考查定积分公式,二项展开式公式等知识点,属于简单题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)或【解析】

(1)根据为真命题列出不等式,进而求得实数的取值范围;(2)应用复合命题真假判定的口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.【详解】(1),且,解得所以当为真命题时,实数的取值范围是.(2)由,可得,又∵当时,,.∵当为真命题,且为假命题时,∴与的真假性相同,当假假时,有,解得;当真真时,有,解得;故当为真命题且为假命题时,可得或.【点睛】本题主要考查结合不等式的含有量词的命题的恒成立问题,存在性问题,考查复合命题的真假判断,意在考查学生对这些知识的掌握水平和分析推理能力.18.(1);(2).【解析】

(1)整理得:,再由余弦定理可得,问题得解.(2)由正弦定理得:,,,再代入即可得解.【详解】(1)由题意,得,∴;(2)由正弦定理,得,,∴.【点睛】本题主要考查了正、余弦定理及三角形面积公式,考查了转化思想及化简能力,属于基础题.19.(1)见解析(2)直线过定点.【解析】

(1)设出两点的坐标,利用导数求得切线的方程,设出点坐标并代入切线的方程,同理将点坐标代入切线的方程,利用韦达定理求得线段中点的横坐标,由此判断出轴.(2)求得点的纵坐标,由此求得点坐标,求得直线的斜率,由此求得直线的方程,化简后可得直线过定点.【详解】(1)设切点,,,∴切线的斜率为,切线:,设,则有,化简得,同理可的.∴,是方程的两根,∴,,,∴轴.(2)∵,∴.∵,∴直线:,即,∴直线过定点.【点睛】本小题主要考查直线和抛物线的位置关系,考查直线过定点问题,考查化归与转化的数学思想方法,属于中档题.20.(1)(2)证明见解析【解析】

(1)采用零点分段法:、、,由此求解出不等式的解集;(2)先根据绝对值不等式的几何意义求解出的值,然后利用基本不等式及其变形完成证明.【详解】(1)当时,不等式为,解得当时,不等式为,解得当时,不等式为,解得∴原不等式的解集为(2)当且仅当即时取等号,∴,∴∵,∴,∴(当且仅当时取“”)同理可得,∴∴(当且仅当时取“”)【点睛】本题考查绝对值不等式的解法以及利用基本不等式证明不等式,难度一般.(1)常见的绝对值不等式解法:零点分段法、图象法、几何意义法;(2)利用基本不等式完成证明时,注意说明取等号的条件.21.(1)(2).【解析】

(1)根据,由向量,的坐标直接计算即得;(2)先求出,再根据向量平行的坐标关系解得.【详解】(1)由题,向量,,则.(2),.,,整理得,化简得,即,,,,即.【点睛】本题考查平面向量的坐标运算,以及向量平行,是常考题型.22.(1)当时,函数取得极小值为,无极大值;(2)【解析】试题分析:(1),通过求导分析,得函数取得极小值为,无极大值;(2),所以,通过求导讨论,得到的取值范围是.试题解析:(1)函数的定义域为当时,,所以所以当时,,当时,,所以函数在区间单调

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论