




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE7/21选修1-22.1.2演绎推理(陈昌杰)一、教学目标1.核心素养通过对演绎推理的学习,在数学体验中培养学生的抽象能力和逻辑推理的能力.2.学习目标(1)结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单的推理.(2)结合生活中的实例,创设民主的学习氛围和生动的学习情景,鼓励,引导学生通过思考,质疑等丰富多彩的认知过程来获取数学知识(3)发展学习数学的兴趣,让学生乐于探究数与形变化的奥秘,体验数学探究的艰辛和喜悦,感受数学世界的奇妙和谐.(4)结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单的推理.3.学习重点了解演绎推理的含义,能利用“三段论”进行简单的推理4.学习难点分析证明过程中包含的“三段论”形式.二、教学设计(一)课前设计1.预习任务任务1预习教材P30—P33思考:什么是演绎推理?演绎推理的模式是什么?2.预习自测1.有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误答案:C2.演绎推理是以下列哪个为前提,推出某个特殊情况下的结论的推理方法()A.一般的原理原则B.特定的命题C.一般的命题D.定理、公式答案:A3.下列表述正确的是()①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A.①②③B.②③④C.②④⑤D.①③⑤答案:D(二)课堂设计1.知识回顾现在冰雪覆盖的南极大陆,地质学家说它们曾在赤道附近,是从热带飘移到现在的位置的,为什么呢?原来在它的地底下,有着丰富的煤矿,煤矿中的树叶表明它们是阔叶树.从繁茂的阔叶树可以推知当时有温暖湿润的气候.所以南极大陆曾经在温湿的热带.被人们称为世界屋脊的西藏高原上,一座座高山高入云天,巍然屹立.西藏高原南端的喜马拉雅山横空出世,雄视世界.珠穆郎玛峰是世界第一高峰,登上珠峰顶,一览群山小.谁能想到,喜马拉雅山所在的地方,曾经是一片汪洋,高耸的山峰的前身,竟然是深不可测的大海.地质学家是怎么得出这个结论的呢?科学家们在喜马拉雅山区考察时,曾经发现高山的地层中有许多鱼类、贝类的化石.还发现了鱼龙的化石.地质学家们推断说,鱼类贝类生活在海洋里,在喜马拉雅山上发现它们的化石,说明喜马拉雅山曾经是海洋.科学家们研究喜马拉雅变迁所使用的方法,就是一种名叫演绎推理的方法.2.问题探究问题探究一什么是演绎推理●活动一1.什么是演绎推理?从一般性的原理出发,推出某个特殊情况下的结论的推理方法.●活动二2.演绎推理的一般模式分析喜马拉雅山所在的地方,曾经是一片汪洋推理过程:鱼类、贝类、鱼龙,都是海洋生物,它们世世代代生活在海洋里……大前提在喜马拉雅山上发现它们的化石……小前提喜马拉雅山曾经是海洋……结论三段论 (1)大前提……已知的一般原理(2)小前提……所研究的特殊情况(3)结论……根据一般原理,对特殊情况作出的判断三段论推理是演绎推理的主要模式,推理形式为“如果b⇒c,a⇒b,则a⇒c.”其中,b⇒c为大前提,提供了已知的一般性原理;a⇒b为小前提,提供了一个特殊情况;a⇒c为大前提和小前提联合产生的逻辑结果.先看下面的例子:把下列语句写成三段论的形式:(1)太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此冥王星以椭圆形轨道绕太阳运行;(2)在一个标准大气压下,水的沸点是100°C,所以在一个标准大气压下把水加热到100°C时,水会沸腾;(3)一切奇数都不能被2整除,是奇数,所以不能被2整除;(4)三角函数都是周期函数,是三角函数,因此是周期函数;(5)两条直线平行,同旁内角互补.如果∠A与∠B是两条平行直线的同旁内角,那么∠A+∠B=180°解答如下:(1)大前提:太阳系的大行星都以椭圆形轨道绕太阳运行小前提:冥王星是太阳系的大行星结论:冥王星以椭圆形轨道绕太阳运行(2)大前提:在一个标准大气压下,水的沸点是100°C小前提:在一个标准大气压下把水加热到100°C时结论:水会沸腾(3)大前提:一切奇数都不能被2整除小前提:是奇数结论:不能被2整除(4)大前提:三角函数都是周期函数小前提:是三角函数结论:是周期函数(5)大前提:两条直线平行,同旁内角互补小前提:∠A与∠B是两条平行直线的同旁内角结论:∠A+∠B=180°问题探究二三段论推理的可靠性●活动一三段论推理一定是可靠的吗?只有“大前提、小前提”都正确的前提下,“结论”才正确.看下面的例子:(1)有一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数”.这个推理是否正确?为什么?显然这个推理不正确,原因是大前提不正确.(2)两条直线平行,同旁内角互补,如果∠A和∠B是两条平行线的同位角,那么∠A+∠B=180°显然这个推理不正确,原因是小前提不正确.问题探究三合情推理与演绎推理的区别●活动一归纳和类比是常用的合情推理,从推理形式上看,归纳是由部分到整体、个别到一般的推理,类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确.人们在认识世界的过程中,需要通过观察、实验等获取经验;也需要辨别它们的真伪,或将积累的知识加工、整理,使之条理化、系统化.合情推理和演绎推理分别在这两个环节中扮演着重要角色.就数学而言,演绎推理是证明数学结论、建立数学体系的重要思维过程.但数学结论、证明思路等的发现,主要靠合情推理.因此,我们不仅要学会证明,也要学会猜想.问题探究四活学活用演绎推理●活动一把演绎推理写成三段论的形式把演绎推理写成三段论的形式必须弄清问题的大前提、小前提和结论.例1将下列演绎推理写成三段论的形式.(1)一切奇数都不能被2整除,75不能被2整除,所以75是奇数.(2)三角形的内角和为180°,Rt△ABC的内角和为180°.(3)菱形对角线互相平分.(4)通项公式为an=3n+2(n≥2)的数列{an}为等差数列.【知识点:演绎推理】详解:(1)一切奇数都不能被2整除.(大前提)75不能被2整除.(小前提)75是奇数.(结论)(2)三角形的内角和为180°.(大前提)Rt△ABC是三角形.(小前提)Rt△ABC的内角和为180°.(结论)(3)平行四边形对角线互相平分.(大前提)菱形是平行四边形.(小前提)菱形对角线互相平分.(结论)(4)数列{an}中,如果当n≥2时,an-an-1为常数,则{an}为等差数列.(大前提)通项公式an=3n+2,n≥2时,an-an-1=3n+2-[3(n-1)+2]=3(常数).(小前提)通项公式为an=3n+2(n≥2)的数列{an}为等差数列.(结论)点拔:注意“三段论”的基本形式,即:“大前提、小前提和结论”.三段论推理是演绎推理的主要模式,推理形式为“如果b⇒c,a⇒b,则a⇒c.”其中,b⇒c为大前提,提供了已知的一般性原理;a⇒b为小前提,提供了一个特殊情况;a⇒c为大前提和小前提联合产生的逻辑结果.●活动二三段论在几何中的应用例2已知在梯形ABCD中,如图,AB=CD=AD,AC和BD是梯形的对角线,求证:AC平分∠BCD,DB平分∠CBA.【知识点:演绎推理】详解:∵等腰三角形两底角相等, (大前提)△DAC是等腰三角形,∠1和∠2是两个底角, (小前提)∴∠1=∠2. (结论)∵两条平行线被第三条直线截得的内错角相等, (大前提)∠1和∠3是平行线AD、BC被AC截得的内错角, (小前提)∴∠1=∠3. (结论)∵等于同一个角的两个角相等, (大前提)∠2=∠1,∠3=∠1, (小前提)∴∠2=∠3,即AC平分∠BCD. (结论)同理可证DB平分∠CBA.例3已知A,B,C,D四点不共面,M,N分别是△ABD和△BCD的重心,求证:MN∥平面ACD.【知识点:演绎推理,三角形的重心,线线平行,线面平行】详解:如图所示,连接BM,BN并延长,分别交AD,DC于P,Q两点,连接PQ.因为M,N分别是△ABD和△BCD的重心, (小前提)所以P,Q分别是AD,DC的中点. (结论)又因为eq\f(BM,MP)=eq\f(BN,NQ), (小前提)所以MN∥PQ, (结论)又MN⊄平面ADC,PQ⊂平面ADC, (小前提)所以MN∥平面ACD. (结论)点拔:(1)三段论是最重要且最常用的推理表现形式,我们以前学过的平面几何与立体几何的证明,都不自觉地运用了这种推理,只不过在利用该推理时,往往省略了大前提.(2)几何证明问题中,每一步都包含着一般性原理,都可以分析出大前提和小前提,将一般性原理应用于特殊情况,就能得出相应结论.●活动三三段论在代数中的应用例4已知a,b,m均为正实数,b<a,用三段论形式证明eq\f(b,a)<eq\f(b+m,a+m)【知识点:演绎推理,不等式的性质】详解:因为不等式(两边)同乘以一个正数,不等号不改变方向, (大前提)b<a,m>0, (小前提)所以,mb<ma. (结论)因为不等式两边同加上一个数,不等号不改变方向, (大前提)mb<ma, (小前提)所以,mb+ab<ma+ab,即b(a+m)<a(b+m). (结论)因为不等式两边同除以一个正数,不等号不改变方向, (大前提)b(a+m)<a(b+m),a(a+m)>0, (小前提)所以,,即. (结论)点拔:使用三段论应注意的问题(1)应用三段论证明问题时,要充分挖掘题目外在和内在条件(小前提),根据需要引入相关的适用的定理和性质(大前提),并保证每一步的推理都是正确的,严密的,才能得出正确的结论.(2)证明中常见的错误:①条件分析错误(小前提错).②定理引入和应用错误(大前提错).③推理过程错误等.●活动四三段论在应用中的易错问题例5(1)定义在实数集R上的函数f(x),对任意x,y∈R,有f(x-y)+f(x+y)=2f(x)f(y),且f(0)≠0,求证:f(x)是偶函数.【知识点:演绎推理,奇、偶函数】证明:令x=y=0,则有f(0)+f(0)=2f(0)×f(0),因为f(0)≠0,所以f(0)=1,令x=0,则有f(-y)+f(y)=2f(0)f(y)=2f(y),所以f(-y)=f(y),因此,f(x)是偶函数.以上证明结论“f(x)是偶函数”运用了演绎推理的“三段论”,其中大前提是:___________________________.解析:通过两次赋值先求得“f(0)=1”,再证得“f(-y)=f(y)”,从而得到结论“f(x)是偶函数”.所以这个三段论推理的小前提是“f(-y)=f(y)”,结论是“f(x)是偶函数”,显然大前提是“若对于定义域内任意一个x,都有f(-x)=f(x),则f(x)是偶函数”.答案:若对于定义域内任意一个x,都有f(-x)=f(x),则f(x)是偶函数(2)所有眼睛近视的人都是聪明人,我近视得很厉害,所以我是聪明人.下列各项中揭示了上述推理是明显错误的是________.【知识点:演绎推理】①我是个笨人,因为所有的聪明人都是近视眼,而我的视力那么好.②所有的猪都有四条腿,但这种动物有八条腿,所以它不是猪.③小陈十分高兴,所以小陈一定长得很胖,因为高兴的人都长得很胖.④所有尖嘴的鸟都是鸡,这种总在树上待着的鸟是尖嘴的,因此这种鸟是鸡.解析:根据④中的推理可得:这种总在树上待着的鸟是鸡,这显然是错误的.①②③不符合三段论的形式.答案:④点拔:解本题的关键是透彻理解三段论推理的形式:大前提——小前提——结论,其中大前提是一个一般性的命题,即证明这个具体问题的理论依据.因此结合f(x)是偶函数的定义和证明过程容易确定本题答案.本题易误认为题目的已知条件为大前提而导致答案错误.3.课堂总结【知识梳理】比较:合情推理与演绎推理的区别与联系从推理形式上看,归纳是由部分到整体、个体到一般的推理;类比推理是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待于进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确.人们在认识世界的过程中,需要通过观察、实验等获取经验;也需要辨别它们的真伪,或将积累的知识加工、整理,使之条理化,系统化,合情推理和演绎推理分别在这两个环节中扮演着重要的角色.就数学而言,演绎推理是证明数学结论、建立数学体系的重要思维过程,但数学结论、证明思路等的发现,主要靠合情推理.因此,我们不仅要学会证明,也要学会猜想.【难点突破】(1)检验假设和理论:演绎法对假说作出推论,同时利用观察和实验来检验假设.(2)逻辑论证的工具:为科学知识的合理性提供逻辑证明.(3)作出科学预见的手段:把一个原理运用到具体场合,作出正确推理.演绎推理是一种必然性推理,推理的前提是一般,推出的结论是个别,一般中概括了个别.事物有共性,必然蕴藏着个别,所以“一般”中必然能够推演出“个别”,而推演出来的结论是否正确,取决于:大前提是否真确,推理是否合乎逻辑.演绎法也有其局限,推理结论的可靠性受前提(归纳的结论)的制约,而前提是否正确在演绎范围内是无法解决的.归纳法和演绎法在认识论中的辩证关系:归纳法是由认识个别到认识一般;演绎法是由认识一般进而认识个别.4.随堂检测1.已知函数f(x)=x3+m·2x+n是奇函数,则()A.m=0B.m=0,或n=0C.n=0D.m=0,且n=0解:D【知识点:演绎推理,奇、偶函数】2.设a=(x,4),b=(3,2),若a∥b,则x的值是()A.-6B.eq\f(8,3)C.-eq\f(8,3)D.6解:∵a∥b,∴eq\f(x,3)=eq\f(4,2),∴x=6.故答案为D.3.设n是自然数,则eq\f(1,8)(n2-1)的值()A.一定是零B.不一定是偶数C.一定是偶数D.是整数但不一定是偶数答案:C解析:当n为偶数时,eq\f(1,8)(n2-1)=0为偶数;当n为奇数时(n=2k+1,k∈N),eq\f(1,8)(n2-1)=eq\f(1,8)(4k2+4k)·2=k(k+1)为偶数.所以eq\f(1,8)(n2-1)的值一定为偶数.答案为C4.等差数列{an}中,an>0,公差d>0,则有a4·a6>a3·a7,类比上述性质,在等比数列{bn}中,若bn>0,q>1,写出b5,b7,b4,b8的一个不等关系________.答案:b4+b8>b5+b7解析:将乘积与和对应,再注意下标的对应,有b4+b8>b5+b7.(三)课后作业基础型自主突破1.“所有的金属都能导电,铁是金属,所以铁能导电,”此类推理类型属于()A.演绎推理B.类比推理C.合情推理D.归纳推理答案:A【知识点:演绎推理】“所有的金属都能导电”是大前提,“铁是金属”是小前提,“铁能导电”是结论.此类推理类型属于演绎推理,故选A.2.“是无限不循环小数,所以是无理数.”该命题是演绎推理中的三段论推理,其中大前提是()A.无理数是无限不循环小数B.有限小数或有限循环小数为有理数C.无限不循环小数是无理数D.无限小数是无理数答案:C【知识点:演绎推理】解:大前提是无限不循环小数是无理数,选C.3.“凡是自然数都是整数,4是自然数,所以4是整数.”以上三段认推理()A.正确B.推理形式不正确C.不正确,两个“自然数”概念不一致D.不正确,两个“整数”概念不一致答案:A【知识点:演绎推理】解:大前提“凡是自然数都是整数”,正确;小前提“4是自然数”也正确;推理形式符合演绎推理,所以结论正确.4.推理:“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形.”中的小前提是()A.①B.③C.①② D.②答案:D【知识点:演绎推理】解:,其理由为“大前提:矩形是平行四边形;小前提:三角形不是平行四边形;结论:三角形不是矩形.”5.在△ABC中,E、F分别为AB、AC的中点,则有EF//BC.这个命题的大前提为()A.三角形的中位线平行于第三边B.三角形的中位线等于第三边的一半C.EF为中位线D.EF//BC答案:A【知识点:演绎推理】解:大前提是一个一般性的结论,故选A6.下列说法正确的是()A.类比推理是由特殊到一般的推理B.演绎推理是由特殊到一般的推理C.归纳推理是个别到一般的推理D.合情推理可以作为证明的步骤答案:C【知识点:演绎推理】解:归纳推理是由部分到整体的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理;合情推理的结论不一定正确,不可以作为证明的步骤.故选C.7.下面几种推理过程是演绎推理的是()A.两条直线平行,同旁内角互补,因为∠A和∠B是两条平行直线被第三条直线所截得的同旁内角,所以∠A+∠B=180°B.我国地质学家李四光发现中国松辽地区和中细亚的地质结构类似,而中细亚有丰富的石油,由此,他推断松辽地区也蕴藏着丰富的石油C.由,得出结论:一个偶数(大于4)可以写成两个素数之和D.在数列中,(),由此归纳出数列的通项公式答案:A【知识点:演绎推理】解:选项A中“两条直线平行,同旁内角互补”是大前提,是真命题,该推理为三段论推理,选项B为类比推理,选项C、D都是归纳推理.能力型师生共研1.用三段论推理:“任何实数的平方大于0,因为是实数,所以”.你认为这个推理()A.大前提错误B.小前提错误C.推理形式错误D.是正确的答案:A【知识点:演绎推理】解:大前提“任何实数的平方大于0”错误,应该是“任何实数的平方大于或等于0”.故选择A.2.以下说法正确的个数是()①公安人员由罪犯的脚印的尺寸估计罪犯的身高情况,所运用的是类比推理;②农“瑞雪兆丰年”是通过归纳推理得到的;③由平面几何中圆的一些性质,推测出球的某些性质,这是运用了类比推理;④个位是5的整数是5的倍数,2375的个位是5,因此,2375是5的倍数,这是运用了演绎推理.A.0B.2C.3D.4答案:C【知识点:演绎推理】解:本题主要考查了几种推理与证明的判断.②③④都是正确的,对于①公安人员由罪犯的脚印的尺寸估计罪犯的身高情况,所运用的是归纳推理,故选C.3.下列三句话按“三段论”模式排列顺序正确的是()①函数是三角函数;②三角函数是周期函数;③函数是周期函数.A.①②③B.②①③C.②③①D.③②①答案:B【知识点:演绎推理】解:∵“三段论”的结构是“若S是P,Q是S,则Q是P”,故选择B.4.商家通常依据“乐观系数准则”确定商品销售价格,及根据商品的最低销售限价,最高销售限价以及实数确定实际销售价格,这里被称为乐观系数.经验表明,最佳乐观系数恰好使得是和的等比中项,据此可得,最佳乐观系数x的值等于______.答案:【知识点:演绎推理,等比数列,等比中项】解:∵,即,∴①∵是和的等比中项,即将①两边同乘以,可得,即②根据,可得,则③由②③可得,又,∴,解得:,又,∴∴最佳乐观系数的值等于.探究型多维突破1.对于三次函数,给出定义是的导函数的导函数,若方程有实数解,则称点为函数的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.若三次函数,请你根据这一发现,求:(1)的对称中心为____________;(2)____________.答案:;2018【知识点:演绎推理,函数与导数】解:(1),,令得,,又,故对称中心为.(2)由(1)可得:,.2.如右图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.(1)求证:PC⊥BC;(2)求点A到平面PBC的距离.答案:见解析解析:【知识点:演绎推理,棱锥的概念,锥体的体积,线线垂直,线面垂直,点到平面的距离】(1)∵PD⊥平面ABCD,BC⊂平面ABCD,∴PD⊥BC.由∠BCD=90°,得BC⊥DC.又PD∩DC=D,∴BC⊥平面PDC.∵PC⊂平面PDC,∴BC⊥PC,即PC⊥BC.(2)连接AC.设点A到平面PBC的距离为h,∵AB∥DC,∠BCD=90°,∴∠ABC=90°.从而由AB=2,BC=1,得△ABC的面积S△ABC=1,由PD⊥平面ABCD及PD=1,得三棱锥P-ABC的体积V=eq\f(1,3)S△ABC·PD=eq\f(1,3).∵PD⊥平面ABCD,DC⊂平面ABCD,∴PD⊥DC,又PD=DC=1.∴PC=eq\r(PD2+DC2)=eq\r(2).由PC⊥BC,BC=1,得△PBC的面积S△PBC=eq\f(\r(2),2),由V=eq\f(1,3)S△PBC·h=eq\f(1,3)·eq\f(\r(2),2)·h=eq\f(1,3),得h=eq\r(2).因此,点A到平面PBC的距离为eq\r(2).(四)自助餐1.下面几种推理过程是演绎推理的是()A.两条直线平行,同旁内角互补,如果∠A和∠B是两条平行线的同旁内角,那么∠A+∠B=180°B.由平面三角形的性质,推测空间四面体的性质C.某高校共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D.在数列{an}中,a1=1,an=eq\f(1,2)(an-1+eq\f(1,an-1))(n≥2),由此归纳出{an}的通项公式解:A【知识点:演绎推理】2.在演绎推理中,只要________是正确的,结论必定是正确的.答案:大前提和推理过程【知识点:演绎推理】3.关于函数f(x)=lgeq\f(x2+1,|x|)(x≠0),有下列命题:①其图象关于y轴对称;②当x>0时,f(x)为增函数;③f(x)的最小值是lg2;④当-1<x<0,或x>1时,f(x)是增函数;⑤f(x)无最大值,也无最小值.其中正确结论的序号是________.答案:①③④【知识点:演绎推理,函数的性质】易知f(-x)=f(x),则f(x)为偶函数,其图象关于y轴对称,①正确.当x>0时,f(x)=lgeq\f(x2+1,|x|)=lg(x+eq\f(1,x)).∵g(x)=x+eq\f(1,x)在(0,1)上是减函数,在(1,+∞)上是增函数,∴f(x)在(0,1)上是减函数,在(1,+∞)上是增函数,故②不正确,而f(x)有最小值lg2,故③正确,④也正确,⑤不正确.答案为①③④4.因为中国的大学分布在全国各地,大前提北京大学是中国的大学,小前提所以北京大学分布在全国各地.结论(1)上面的推理形式正确吗?为什么?(2)推理的结论正确吗?为什么?【知识点:演绎推理】解:(1)推理形式错误.大前提中的M是“中国的大学”它表示中国的所有大学,而小前提中M虽然也是“中国的大学”,但它表示中国的一所大学,二者是两个不同的概念,故推理形式错误.(2)由于推理形式错误,故推理的结论错误.5.已知a,b,c是实数,函数f(x)=ax2+bx+c,当|x|≤1时,|f(x)|≤1,证明|c|≤1,并分析证明过程中的三段论.证明∵|x|≤1时,|f(x)|≤1.x=0满足|x|≤1,∴|f(0)|≤1,又f(0)=c,∴|c|≤1.证明过程中的三段论分析如下:大前提是|x|≤1,|f(x)|≤1;小前提是|0|≤1;结论是|f(0)|≤1.6.如图,在空间四边形ABCD中,点E,F分别是AB,AD的中点,试用三段论的形式证明EF∥平面BCD.【知识点:演绎推理,三角形的中位线,线面平行的判定】证明:连接BD.∵三角形的中位线平行于第三边,大前提而EF是△ABD的中位线,小前提∴EF∥BD.结论∵如果不在平面内的一条直线和该平面内的一条直线平行,那么这条直线和这个平面平行,大前提而EF⊄平面BCD,BD⊂平面BCD,且EF∥BD,小前提∴EF∥平面BCD.结论7.数列{an}的前n项和为Sn,已知a1=1,an+1=eq\f(n+2,n)Sn,(n=1,2,3,…).证明:(1)数列eq\b\lc\{\rc\)(\a\vs4\al\co1(\f(Sn,n)))是等比数列;(2)Sn+1=4an.【知识点:演绎推理,数列的概念,等比数列】证明(1)∵an+1=Sn+1-Sn,an+1=eq\f(n+2,n)Sn(n=1,2,3,…),∴(n+2)Sn=nan+1=n(Sn+1-Sn),即nSn+1=2(n+1)Sn,∴eq\f(Sn+1,n+1)=2·eq\f(Sn,n)(n=1,2,3,…).故数列eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(Sn,n)))是首项为1,公比为2的等比数.(2)由(1)知,eq\f(Sn+1,n+1)=2·eq\f(Sn,n)=4·eq\f(Sn-1,n-1)(n≥2),则Sn+1=4(n+1)·eq\f(Sn-1,n-1)=4an(n≥2).又∵a2=3S1=3,∴S2=a1+a2=4=4a1.故对任意的n∈N*,有Sn+1=4an.数学视野类比推理虽然不能直接推动社会进步,但它在人们的认识中具有重要作用.它可以拓展人们的眼界,可以为人们改造和认识世界、推动社会进步提供一个有效的思维方法.1.类比推理是探索真理的重要逻辑形式
类比推理是在已有知识的基础上进一步发展科学的一种有效的探索方法.在科学研究中具有开拓思路、提供线索、举一反三、触类旁通的作用,正如康德所说:“每当理智缺乏可靠的论证思路时,类比这个方法往往指引我们前进.”科学史上很多著名的发现是借助于类比推理而获得的.
据历史记载,西拉克斯的国王为庆功谢神,命金匠打造了一顶纯金皇冠,要献给不朽的神.完工后,国王怀疑皇冠不纯,但在不毁坏皇冠的情况下找不到解决的方法,便请教好友阿基米德.这就是著名的皇冠问题.阿基米德苦思一段时间,也无所得.一日,他到澡堂洗澡,当他的身体进入浴池时,他敏锐地察觉到水位上升,由此受到启迪,产生联想,于是把在自己进入浴池中水位上升与求皇冠质量进行类比,发现了浮力原理这一共同规律,并解决了“皇冠问题”.在这之后,浮力原理被广泛应用于科学研究与生产生活之中.2.类比推理可以帮助人们提出科学假说
类比推理是形成科学假说的重要推理形式.在科学史上,许多重要的科学假说都是利用类比推理的思维方法建立起来的.
19世纪中叶,奥地利首都维也纳有一位医生,名叫奥恩布鲁格.有一次,他给一位病人看病,没有检查出什么严重疾病,但病人很快就死了.经过解剖尸体查看,发现胸膛积满脓水.医生想,以后再碰到这样的病人怎么诊断?忽然想起他父亲在经营酒店时,常用手指关节敲木质酒桶,听到卜卜的叩击声,就能估量出木桶中还有多少酒.他思考:人们的胸膛不是很像酒桶吗?他通过反复探索胸部疾病和叩击声音之间变化的关系,终于写出《用叩诊人体胸部发现胸膛内部疾病的新方法》的医学论文,发明了“叩诊”这一医疗方法.
在上例中,奥恩布鲁格就是运用类比推理把“酒桶和装酒量”与“人的胸膛和胸腔积水”作类比:同是封闭的物体,内藏液体,叩击时能发出声音等,从而根据叩桶知酒量而推出叩胸知病情的结论.此外,在科学发展史上,惠更斯提出的光的波动假说,卢瑟福及其学生提出的原子结构的行星模型假说,也都是运用类比推理建立了巨大的功绩.3.类比推理为现代科学技术经常应用的仿生学提供了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论