难点详解四川省西昌市中考数学真题分类(勾股定理)汇编专项测评试题(含答案解析)_第1页
难点详解四川省西昌市中考数学真题分类(勾股定理)汇编专项测评试题(含答案解析)_第2页
难点详解四川省西昌市中考数学真题分类(勾股定理)汇编专项测评试题(含答案解析)_第3页
难点详解四川省西昌市中考数学真题分类(勾股定理)汇编专项测评试题(含答案解析)_第4页
难点详解四川省西昌市中考数学真题分类(勾股定理)汇编专项测评试题(含答案解析)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省西昌市中考数学真题分类(勾股定理)汇编专项测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、如图,长方形中,,,将此长方形折叠,使点与点重合,折痕为,则的长为(

)A.12 B.8 C.10 D.132、下列各组数:①3、4、5

②4、5、6

③2.5、6、6.5

④8、15、17,其中是勾股数的有(

)A.4组 B.3组 C.2组 D.1组3、如图,有一块直角三角形纸片,∠C=90°,AC=8,BC=6,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为(

)A.2 B. C. D.44、如图,在由边长为1的7个正六边形组成的网格中,点A,B在格点上.若再选择一个格点C,使△ABC是直角三角形,且每个直角三角形边长均大于1,则符合条件的格点C的个数是(

)A.2 B.4 C.5 D.65、如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当∠DEB是直角时,DF的长为(

).A.5 B.3 C. D.6、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,若AC=3,AB=5,则CE的长为()A. B. C. D.7、“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.6第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、如图所示,在四边形ABCD中,AB=5,BC=3,DE⊥AC于E,DE=3,S△DAC=6,则∠ACB的度数等于_____.2、如图,在的正方形网格中,每个小正方形的顶点称为格点,点、、均在格点上,则______.3、我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(jiā)生其中,出水一尺.引葭赴岸(丈、尺是长度单位,1丈10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,它高出水面1尺(即BC=1尺).如果把这根芦苇拉向水池一边的中点,它的顶端B恰好到达池边的水面D处,问水的深度是多少?则水深DE为_____尺.4、《九章算术》中有“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:有一根竹子原来高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?如图,设折断处距离地面x尺,根据题意,可列方程为______.5、《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(如图).则芦苇长_____尺.6、如图,矩形ABCD中,AD=6,AB=8.点E为边DC上的一个动点,△AD'E与△ADE关于直线AE对称,当△CD'E为直角三角形时,DE的长为__.7、如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D.已知AB=15,Rt△ABC的周长为15+9,则CD的长为_____.8、如图,在△ABC中,AB=10,BC=9,AC=17,则BC边上的高为_______.三、解答题(7小题,每小题10分,共计70分)1、如图,,两个工厂位于一段直线形河道的异侧,工厂至河道的距离为,工厂至河道的距离为,经测量河道上、两地间的距离为,现准备在河边某处(河宽不计)修一个污水处理厂.(1)设,请用的代数式表示的长______;(结果保留根号)(2)为了使,两厂到污水处理厂的排污管道之和最短,请在图中画出污水厂位置,并求出排污管道最短长度?(3)通过以上的解答,充分展开联想,运用数形结合思想,请你求出的最小值为多少?2、已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.3、勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.它是初中数学中的重要知识点之一,也是初中学生以后解决数学问题和实际问题中常常运用到的重要知识,因此学好勾股定理非常重要.学习数学“不仅要知其然,更要知其所以然”,所以,我们要学会勾股定理的各种证明方法.请你利用如图图形证明勾股定理:已知:如图,四边形ABCD中,BD⊥CD,AE⊥BD于点E,且△ABE≌△BCD.求证:AB2=BE2+AE2.4、2020年春季“新冠肺炎”在武汉全面爆发,蔓延全国,危及到人民生命安全,为了积极响应国家防控政策,双流区某镇政府采用了移动宣讲的形式进行宣传防控措施,如图,笔直公路的一侧点处有一村庄,村庄到公路的距离为600米,假设宣讲车周围1000米以内能听到广播宣传,宣讲车在公路上沿方向行驶时:(1)请问村庄能否听到宣传,请说明理由;(2)如果能听到,已知宣讲车的速度是200米/分钟,那么村庄总共能听到多长时间的宣传?5、已知,如图,,C为上一点,与相交于点F,连接.,.(1)求证:;(2)已知,,,求的长度.6、在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.7、某海上有一小岛,为了测量小岛两端A,B的距离,测量人员设计了一种测量方法,如图,已知B是CD的中点,E是BA延长线上的一点,且∠CED=90°,测得AE=16.6海里,DE=60海里,CE=80海里.(1)求小岛两端A,B的距离.(2)过点C作CF⊥AB交AB的延长线于点F,求值.-参考答案-一、单选题1、D【解析】【分析】设BE为x,则AE为25-x,在由勾股定理有,即可求得BE=13.【详解】设BE为x,则DE为x,AE为25-x∵四边形为长方形∴∠EAB=90°∴在中由勾股定理有即化简得解得故选:D.【考点】本题考查了折叠问题求折痕或其他边长,主要可根据折叠前后两图形的全等条件,把某个直角三角形的三边都用同一未知量表示出来,并根据勾股定理建立方程,进而可以求解.2、C【解析】【详解】解:∵32+42=52,①符合勾股数的定义;∵42+52≠62,②不符合勾股数的定义;∵2.5和6.5不是正整数,③不符合勾股数的定义;∵82+152=172,④符合勾股数的定义,是勾股数的有:①④,共2组,故选:C.3、B【解析】【分析】根据勾股定理求出AB的长,利用翻折得到AE=AB=10,DE=BD,求出CE,由勾股定理得到,列得,求出BD.【详解】解:∵∠C=90°,AC=8,BC=6,∴,由翻折得AE=AB=10,DE=BD,∴CE=AE-AC=10-8=2,在Rt△CED中,,∴,解得BD=,故选:B.【考点】此题考查了勾股定理的应用,翻折的性质,熟记勾股定理的计算公式是解题的关键.4、D【解析】【分析】分三种情况讨论,当∠A=90°,或∠B=90°,或∠C=90°时,分别画出符合条件的图形,即可解答.【详解】解:分三种情况讨论,当∠A=90°,或∠B=90°,或∠C=90°如图符合条件的格点C的个数是6个故选:D.【考点】本题考查正多边形和圆的性质、直角三角形的判定与性质、直径所对的圆周角是90°等知识,是基础考点,掌握相关知识是解题关键.5、C【解析】【分析】如图,由题意知,,,,可知三点共线,与重合,在中,由勾股定理得,求的值,设,,在中,由勾股定理得,计算求解即可.【详解】解:如图,∵是直角∴由题意知,,∴∴三点共线∴与重合在中,由勾股定理得设,在中,由勾股定理得即解得∴的长为故选C.【考点】本题考查了折叠的性质,勾股定理等知识.解题的关键在于明确三点共线,与重合.6、A【解析】【分析】根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【详解】过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴,∵AC=3,AB=5,∠ACB=90°,∴BC=4,∴,∵FC=FG,∴,解得:FC=,即CE的长为.故选A.【考点】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出∠CEF=∠CFE.7、C【解析】【详解】解:如图所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面积为13,即:a2+b2=13,∴2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选C.二、填空题1、90°##90度【解析】【分析】根据三角形面积公式求出AC=4,根据勾股定理逆定理即可求出∠ACB=90°.【详解】解:∵DE⊥AC于E,DE=3,S△DAC=6,∴×AC×DE=6,∴AC=4,∴,∵AB=5,∴AB2=25,∴,∴∠ACB=90°.故答案为:90°【考点】本题考查了勾股定理逆定理和三角形的面积应用,熟练掌握勾股定理逆定理是解题关键.2、45°##45度【解析】【分析】取正方形网格中格点Q,连接PQ和BQ,证明∠AQB=90°,由勾股定理计算PQ=QB,进而得到△QPB为等腰直角三角形,∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°即可求解.【详解】解:取正方形网格中格点Q,连接PQ和BQ,如下图所示:∴AE=PF,PE=QF,∠AEP=∠PFQ=90°,∴△APE≌△PQF(SAS),∴∠PAB=∠QPF,∵PF∥BE,∴∠PBA=∠BPF,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB,又QA²=2²+4²=20,QB²=2²+1²=5,AB²=5²=25,∴QA²+QB²=20+5=25=AB²,∴△QAB为直角三角形,∠AQB=90°,∵PQ²=2²+1²=5=QB²,∴△PQB为等腰直角三角形,∴∠QPB=∠QBP=(180°-90°)÷2=45°,∴∠PAB+∠PBA=∠QPF+∠BPF=∠QPB=45°,故答案为:45°.【考点】本题考查了勾股定理及逆定理、三角形全等的判定等,熟练掌握勾股定理及逆定理是解决本类题的关键.3、12【解析】【分析】设水深为h尺,则芦苇长为(h+1)尺,根据勾股定理列方程,解出h即可.【详解】设水深为h尺,则芦苇长为(h+1)尺,根据勾股定理,得(h+1)2-h2=52解得h=12,∴水深为12尺,故答案是:12.【考点】本题主要考查勾股定理的应用,熟练根据勾股定理列出方程是解题的关键.4、【解析】【分析】根据勾股定理即可得出结论.【详解】解:设未折断的竹干长为尺,根据题意可列方程为:.故答案为:.【考点】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.5、13【解析】【分析】将其转化为数学几何图形,如图所示,根据题意,可知B'C=5尺,设水深AC=x尺,则芦苇长(x+1)尺,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长和水深.【详解】解:设水深x尺,则芦苇长(x+1)尺,在Rt△CAB′中,AC2+B′C2=AB′2,即x2+52=(x+1)2,解得:x=12,∴x+1=13,故芦苇长13尺,故答案为:13【考点】本题考查勾股定理,和列方程解决实际问题,能够在实际问题中找到直角三角形并应用勾股定理是解决本题的关键.6、3或6【解析】【分析】分两种情况分别求解,(1)当∠CED′=90°时,如图(1),根据轴对称的性质得∠AED=∠AED′=45′,得DE=AD=6;(2)当∠ED′A=90°时,如图(2),根据轴对称的性质得∠AD′E=∠D,AD′=AD,DE=D′E,得A、D′、C在同一直线上,根据勾股定理得AC=10,设DE=D′E=x,则EC=CD−DE=8−x,根据勾股定理得,D′E2+D′C2=EC2,代入相关的值,计算即可.【详解】解:当∠CED′=90°时,如图(1),∵∠CED′=90°,根据轴对称的性质得∠AED=∠AED′=×90°=45°,∵∠D=90°,∴△ADE是等腰直角三角形,∴DE=AD=6;(2)当∠ED′A=90°时,如图(2),根据轴对称的性质得∠AD′E=∠D=90°,AD′=AD,DE=D′E,△CD′E为直角三角形,即∠CD′E=90°,∴∠AD′E+∠CD′E=180°,∴A、D′、C在同一直线上,根据勾股定理得,∴CD′=10−6=4,设DE=D′E=x,则EC=CD−DE=8−x,在Rt△D′EC中,D′E2+D′C2=EC2,即x2+16=(8−x)2,解得x=3,即DE=3;综上所述:DE的长为3或6;故答案为:3或6.【考点】本题考查了矩形的性质、勾股定理、轴对称的性质,熟练掌握矩形的性质、勾股定理、轴对称的性质的综合应用,分情况讨论,作出图形是解题关键.7、6【解析】【分析】由已知条件得出AC+BC=9,由勾股定理得出AC2+BC2=AB2=152=225,求出AC×BC=90,由三角形面积即可得出答案.【详解】解:∵Rt△ABC的周长为15+9,∠ACB=90°,AB=15,∴AC+BC=9,AC2+BC2=AB2=152=225,∴(AC+BC)2=(9)2,即AC2+2AC×BC+BC2=405,∴2AC×BC=405−225=180,∴AC×BC=90,∵AB×CD=AC×BC,∴CD==6;故答案为:6.【考点】本题考查了勾股定理,三角形的面积公式,完全平方公式,三角形的周长的计算,熟记直角三角形的性质是解题的关键.8、8【解析】【分析】作交的延长于点,在中,,在中,,根据列出方程即可求解.【详解】如图,作交的延长于点,则即为BC边上的高,在中,,在中,,,AB=10,BC=9,AC=17,,解得,故答案为:8.【考点】本题考查了勾股定理,掌握三角形的高,直角三角形是解题的关键.三、解答题1、(1)+;(2)污水厂位置见解析,排污管道最短长度为10km;(3)13【解析】【分析】(1)依据ED=x,AC⊥CD、BD⊥CD,故根据勾股定理可用x表示出AE+BE的长;(2)根据两点之间线段最短可知连接AB与CD的交点就是污水处理厂E的位置.过点B作BF⊥AC于F,构造出直角三角形,利用勾股定理求出AB的长;(3)根据AE+BE=+=AB=10,可猜想所求代数式的值为13.(1)解:在Rt△ACE和Rt△BDE中,根据勾股定理可得AE=,BE=,∴AE+BE=+;(2)解:根据两点之间线段最短可知,连接AB与CD的交点就是污水处理厂E的位置,如图:过点B作BF⊥AC于F,则有BF=CD=8,BD=CF=1,∴AF=AC+CF=6,在Rt△ABF中,BA===10,∴排污管道最短长度10km;(3)解:根据以上推理,可作出下图:设ED=x,AC=3,DB=2,CD=12.当A、E、B共线时求出AB的值即为原式最小值.当A、E、B共线时,==13,即其最小值为13.故答案为:13.【考点】本题考查了最短路线问题,综合利用了勾股定理,及用数形结合的方法求代数式的值的方法,利用两点之间线段最短是解决问题的关键.2、△ABC为直角三角形或等腰三角形【解析】【分析】首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断△ABC的形状.【详解】解:∵a2c2-b2c2=a4-b4,∴a4-b4-a2c2+b2c2=0,∴(a4-b4)-(a2c2-b2c2)=0,∴(a2+b2)(a2-b2)-c2(a2-b2)=0,∴(a2+b2-c2)(a2-b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC为直角三角形或等腰三角形.3、证明见解析【解析】【分析】连接AC,根据四边形ABCD面积的两种不同表示形式,结合全等三角形的性质即可求解.【详解】解:连接AC,∵△ABE≌△BCD,∴AB=BC,AE=BD,BE=CD,∠BAE=∠CBD,∵∠ABE+∠BAE=90°,∴∠ABE+∠CBE=90°,∴∠ABC=90°,∴S四边形ABCD=,又∵S四边形ABCD=,,∴AB2=AE2+BD•BE-BE•DE,∴AB2=AE2+(BD-DE)•BE,即AB2=BE2+AE2.【考点】本题考查了勾股定理的证明,解题时,利用了全等三角形的对应边相等,对应角相等的性质.4、(1)村庄能听到宣传,理由见解析;(2)村庄总共能听到8分钟的宣传.【解析】【分析】(1)直接比较村庄到公路的距离和广播宣传距离即可;(2)过点作于点,利用勾股定理运算出广播影响村庄的路程,再除以速度即可得到时间.【详解】解:(1)村庄能听到宣传,理由:∵村庄到公路的距离为600米1000米,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论