版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三部分专项提能优化训练专题3.4数学方法在物理中的应用问题目录TOC\o"1-3"\h\u一、正弦定理、余弦定理、三角形相似法 1类型1正弦定理的应用 1类型2余弦定理的应用 4类型3三角形相似法的应用 5eq\a\vs4\al(二、三角函数法) 7eq\a\vs4\al(三、二次函数法) 10四、均值不等式 14四、数学归纳法和数列法 16五、微元法的应用 23一、正弦定理、余弦定理、三角形相似法类型1正弦定理的应用1.正弦定理:在如图甲所示的三角形中,各边和所对应角的正弦之比相等。即:eq\f(a,sinA)=eq\f(b,sinB)=eq\f(c,sinC)【例1】(2020·日照模拟)如图所示,两个质量分别为eq\r(3)m、m的小圆环A、B用不可伸长的细线连着,套在一个竖直固定的大圆环上,大圆环的圆心为O。系统平衡时,细线所对的圆心角为90°,大圆环和小圆环之间的摩擦力及细线的质量忽略不计,重力加速度大小用g表示,下列判断正确的是()A.小圆环A、B受到大圆环的支持力之比是eq\r(3)∶1B.小圆环A受到大圆环的支持力与竖直方向的夹角为15°C.细线与水平方向的夹角为30°D.细线的拉力大小为eq\f(\r(3),2)mg【针对训练1】.在仰角α=30°的雪坡上举行跳台滑雪比赛,如图所示。运动员从坡上方A点开始下滑,到起跳点O时借助设备和技巧,保持在该点的速率不变而以与水平面成θ角的方向起跳。最后落在坡上B点,坡上OB两点距离为L。已知A点高于O点h=50m,不计摩擦和阻力,则OB两点距离L最大值为多少米?此时起跳角为多大?【针对训练2】.(2022·银川模拟)如图所示,a、b两个小球穿在一根光滑的固定杆上,并且通过一条细绳跨过定滑轮连接。已知b球质量为m,杆与水平面的夹角为30°,不计所有摩擦。当两球静止时,Oa段绳与杆的夹角也为30°,Ob段绳沿竖直方向,则a球的质量为()A.eq\r(3)m B.eq\f(\r(3),3)mC.eq\f(\r(3),2)m D.2m【针对训练3】(2022·浙江Z20联盟第二次联考)在圆心为O、半径为R的光学介质圆环内有一点光源P,可以向纸面内各方向发光,已知OP=eq\f(3,4)R,介质折射率n=eq\f(5,3),则从圆周上有光线射出的范围是(sin37°=0.6,cos37°=0.8)()A.πR B.eq\f(53,45)πRC.eq\f(3,2)πR D.2πR类型2余弦定理的应用余弦定理:在如图甲所示的三角形中,有如下三个表达式:a2=b2+c2-2bc·cosAb2=a2+c2-2ac·cosBc2=a2+b2-2ab·cosC【例2】[多选]已知力F的一个分力F1跟F成30°角,大小未知,另一个分力F2的大小为eq\f(\r(3),3)F,方向未知,则F1的大小可能是()A.eq\f(\r(3)F,3) B.eq\f(\r(3)F,2)C.eq\f(2\r(3)F,3) D.eq\r(3)F类型3三角形相似法的应用三角形相似法:相似三角形的对应角相等,对应边成比例,如图乙所示,两三角形相似,有:eq\f(OM,ON)=eq\f(OP,OQ)=eq\f(PM,NQ)【例3】[多选]表面光滑、半径为R的半球固定在水平地面上,球心O的正上方O′处有一无摩擦定滑轮,轻质细绳两端各系一个可视为质点的小球挂在定滑轮上,如图所示。两小球平衡时,若滑轮两侧细绳的长度分别为L1=2.4R和L2=2.5R,这两个小球的质量之比为eq\f(m1,m2),小球与半球之间的压力之比为eq\f(FN1,FN2),则以下说法正确的是()A.eq\f(m1,m2)=eq\f(24,25) B.eq\f(m1,m2)=eq\f(25,24)C.eq\f(FN1,FN2)=eq\f(25,24) D.eq\f(FN1,FN2)=eq\f(24,25)【针对训练】(2021·河南焦作高三模拟)如图所示,固定在竖直平面内的光滑圆环的最高点有一个光滑的小孔,质量为m的小球套在圆环上。一根细线的下端系着小球,上端穿过小孔用手拉住。现拉动细线,使小球沿圆环缓慢上移,在小球移动过程中手对线的拉力F和轨道对小球的弹力FN的大小变化情况是()A.F不变,FN增大 B.F减小,FN不变C.F不变,FN减小 D.F增大,FN减小eq\a\vs4\al(二、三角函数法)三角函数:y=acosθ+bsinθy=acosθ+bsinθ=eq\r(a2+b2)sin(θ+α),其中α=arctaneq\f(a,b)。当θ+α=90°时,有极大值ymax=eq\r(a2+b2)。【例4】(2022·临汾模拟)如图所示是一旅行箱,它既可以在地面上推着行走,也可以在地面上拉着行走。已知该旅行箱的总质量为15kg,一旅客用斜向上的拉力拉着旅行箱在水平地面上做匀速直线运动,若拉力的最小值为90N,此时拉力与水平方向间的夹角为θ,重力加速度大小为g=10m/s2,sin37°=0.6,旅行箱受到地面的阻力与其受到地面的支持力成正比,比值为μ,则()A.μ=0.5,θ=37° B.μ=0.5,θ=53°C.μ=0.75,θ=53° D.μ=0.75,θ=37°【针对训练1】(2022·浙江新高考创新卷)如图所示,重为G的物体在外力F的牵引下沿粗糙水平面做匀速直线运动,已知物体与水平面间的动摩擦因数为μ,若F与水平面间的夹角θ从0°到90°逐渐增大,下列说法错误的是()A.力F逐渐增大B.外力F先减小后增大C.物体受到的合外力保持不变D.支持力与摩擦力的合力方向不变【针对训练3】(2022·湖北省部分重点中学期末联考)一名同学把箱子从圆弧形的坡底缓慢地推到坡顶,该同学作用在箱子上的推力方向和箱子的运动方向始终相同。箱子可视为质点,且箱子和坡面之间的动摩擦因数不变,该同学在推动箱子的过程中,下列说法正确的是()A.推力一直减小B.推力一直增大C.坡对箱子的作用力一直在减小D.坡对箱子的作用力一直在增大【针对训练3】(2022·浙江宁波镇海中学适应性测试)甲、乙两位同学玩相互抛接球的游戏,其中一位同学将球从A点抛出后,另一同学总能在等高处某点B快速接住,如图所示。假设甲同学出手后球的速度大小为v,方向与水平面成θ角,忽略空气阻力,重力加速度为g,下列说法正确的是()A.球在空中做变加速曲线运动B.球在空中上升的最大高度eq\f(v2cos2θ,2g)C.保持θ角不变,球的出手速度越大,球在空中运动的时间一定越短D.保持出手速度大小不变,改变出手方向,A、B点间最大距离eq\f(v2,g)【针对训练4】(2022·肇庆一模)如图(a)所示,一物体以一定的速度v0沿足够长的固定斜面向上运动,此物体在斜面上的最大位移与斜面倾角的关系如图(b)所示。设各种条件下,物体与斜面间的动摩擦因数不变,取g=10m/s2。试求:(1)物体与斜面之间的动摩擦因数及物体的初速度大小;(2)θ为多大时,x值最小?求出x的最小值。eq\a\vs4\al(三、二次函数法)二次函数:y=ax2+bx+c当x=-eq\f(b,2a)时,有极值ym=eq\f(4ac-b2,4a)(若二次项系数a>0,y有极小值;若a<0,y有极大值)。【例5】如图,固定在竖直平面内的倾斜轨道AB,与水平固定光滑轨道BC相连,竖直墙壁CD高H=0.2m,在地面上紧靠墙壁固定一个和CD等高,底边长L1=0.3m的固定斜面。一个质量m=0.1kg的小物块(视为质点)在轨道AB上从距离B点L2=4m处由静止释放,从C点水平抛出,已知小物块与AB段轨道间的动摩擦因数为0.5,通过B点时无能量损失;AB段与水平面的夹角为37°。(空气阻力不计,取重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8)(1)求小物块运动到B点时的速度大小;(2)求小物块从C点抛出到击中斜面的时间;(3)改变小物块从轨道上释放的初位置,求小物块击中斜面时动能的最小值。【针对训练1】[多选](2022·临沂期末)如图所示,矩形线框abcd处于磁感应强度为B的匀强磁场中,磁场方向与线框平面垂直,线框ab长为2L,bc长为L,MN为垂直于ab并可在ab和cd上自由滑动的金属杆,且杆与ab和cd接触良好,abcd和MN上单位长度的电阻皆为r。让MN从ad处开始以速度v向右匀速滑动,设MN与ad之间的距离为x(0≤x≤2L),则在整个过程中()A.当x=0时,MN中电流最小B.当x=L时,MN中电流最小C.MN中电流的最小值为eq\f(2Bv,5r)D.MN中电流的最大值为eq\f(6Bv,11r)【针对训练2】(2022·江苏常州市开学考试)如图所示,歼-20战斗机安装了我国自主研制的矢量发动机,能够在不改变飞机飞行方向的情况下,通过转动尾喷口方向改变推力的方向,使战斗机获得很多优异的飞行性能。已知在歼—20战斗机沿水平方向超音速匀速巡航时升阻比(垂直机身向上的升力和平行机身向后的阻力之比)为eq\r(15)。飞机的重力为G,使飞机实现节油巡航模式的最小推力是()A.G B.eq\f(G,\r(15))C.eq\f(G,16) D.eq\f(G,4)【针对训练3】(2022·浙江高三开学考试)如图所示,用内壁光滑细圆管弯成的半圆形轨道APB(半圆轨道半径远大于细圆管的内径)和直轨道BC组成的装置,把它竖直放置并固定在水平面上,已知半圆轨道半径R=1m,质量m=100g小球(视为质点)压缩弹簧由静止释放,小球从A点弹入圆轨道从C点以v0=8m/s离开轨道随即进入长L=2m、μ=0.1的粗糙水平地面(图上对应为CD),最后通过光滑轨道DE,从E点水平射出,已知E距离地面的高度为h=1m,除CD段外其他处摩擦阻力忽略不计,重力加速度g=10m/s2.不计空气阻力,求:(1)小球到达C点时对圆管的压力;(2)弹簧储存的弹性势能的大小;(3)若E点的高度h可以调节,当h多大时,水平射程x最大,此最大值是多少.【针对训练4】(2022·湖南高三一模)在一条平直的公路上,乙车以v1=10m/s的速度匀速行驶,甲车在乙车的后面做同方向初速度为v2=15m/s、加速度大小为a=0.5m/s2的匀减速运动,若两车初始距离L=36m,请通过计算分析两车能否相遇?若能相遇则求出两车相遇的时间;若不能相遇则求出两车间的最近距离.四、均值不等式由均值不等式a+b≥2eq\r(ab)(a>0,b>0)可知:(1)两个正数的积为定值时,当两数相等,和最小;(2)两个正数的和为定值时,当两数相等,积最大.【例6】如图所示,半圆形光滑轨道固定在水平地面上,半圆的直径与地面垂直.小物块以速度v从轨道下端滑入轨道,并从轨道上端水平飞出,小物块落地点到轨道下端的距离与轨道半径有关,此距离最大时对应的轨道半径为多少?(不计空气阻力,重力加速度大小为g)【针对训练1】(2022·安徽阜阳市教学质量统测)如图所示,AB是固定在竖直面内的eq\f(1,6)光滑圆弧轨道,圆弧轨道最低点B的切线水平,最高点A到水平地面的高度为h。现使一小球(视为质点)从A点由静止释放。不计空气阻力,小球落地点到B点的最大水平距离为()A.eq\f(h,2) B.eq\f(\r(3),2)hC.h D.2h【针对训练2】[2022·浙江绍兴(新昌、浦江、富阳)三校联考]如图所示,轨道ABCDE是研究小球在竖直平面内做圆周运动的条件的简易装置,A到水平桌面的高度为H,最低点B处的入、出口靠近但相互错开,C是半径R=10cm的圆形轨道的最高点,DE部分水平,且恰好与圆形轨道的圆心O1等高,水平桌面上的点O2位于E点的正下方。经过多次实验发现,将一质量m=10g的小球从轨道AB上的某一位置A由静止释放,小球恰能沿轨道运动通过ABCDE到达E点,不计小球与轨道的摩擦阻力以及空气阻力。(g=10m/s2)(1)求出A到水平桌面的高度H,小球对圆轨道压力的最大值;(2)若A距水平桌面高H1=0.3m,小球仍由静止释放,到达E点离开轨道后落在水平桌面上,求落点与O2之间的水平距离x;(3)若小球仍从H1=0.3m处由静止释放,但DE到水平面的高度h可变,求落点与O2之间的水平距离最大值。四、数学归纳法和数列法凡涉及数列求解的物理问题都具有过程多、重复性强的特点,但每一个重复过程均不是原来的完全重复,而是一种变化了的重复.随着物理过程的重复,某些物理量逐步发生着前后有联系的变化.该类问题求解的基本思路为:(1)逐个分析开始的几个物理过程;(2)利用归纳法从中找出物理量变化的通项公式(这是解题的关键);(3)最后分析整个物理过程,应用数列特点和规律求解.无穷数列的求和,一般是无穷递减数列,有相应的公式可用.等差:Sn=eq\f(na1+an,2)=na1+eq\f(nn-1,2)d(d为公差).等比:Sn=eq\b\lc\{\rc\(\a\vs4\al\co1(\f(a11-qn,1-q),q≠1,na1,q=1))(q为公比).【例7】如图所示,质量M=2kg的平板小车左端放有质量m=3kg的小铁块(可视为质点),它和小车之间的动摩擦因数μ=0.5.开始时,小车和铁块共同以v0=3m/s的速度向右在光滑水平面上运动,车与竖直墙正碰,碰撞时间极短且碰撞中不损失机械能.车身足够长,使铁块不能和墙相撞,且始终不能滑离小车.g取10m/s2.求小车和墙第一次碰后直至其最终恰好靠墙静止这段时间内,小车运动的总路程.【针对训练1】(2022·浙江嘉兴市教学测试)如图所示,张同学进行射击游戏,把弹丸(视为质点)从竖直放置的圆柱形筒的顶端A处沿圆筒的直径方向水平射出,已知弹丸初速度大小为v0=10m/s,圆柱筒高h=2.45m,直径d=1m,物体每次与竖直筒壁碰撞,水平分速度大小变为原来的50%,方向相反,竖直分速度不变,则弹丸()A.经筒壁1次反弹并击中筒底左边缘B处B.经筒壁2次反弹并击中筒底右边缘C处C.经筒壁2次反弹并击中筒底B、C间某处D.经筒壁3次反弹并击中筒底B、C间某处【针对训练2】(2022·山东烟台市一模)如图所示,质量为M=4.5kg的长木板置于光滑水平地面上,质量为m=1.5kg的小物块放在长木板的右端,在木板右侧的地面上固定着一个有孔的弹性挡板,孔的尺寸刚好可以让木板无接触地穿过。现使木板和物块以v0=4m/s的速度一起向右匀速运动,物块与挡板碰撞后立即以碰前的速率反向弹回,而木板穿过挡板上的孔继续向右运动,整个过程中物块不会从长木板上滑落。已知物块与挡板第一次碰撞后,物块离开挡板的最大距离为x1=1.6m,重力加速度g取10m/s2:(1)求物块与木板间的动摩擦因数;(2)若物块与挡板第n次碰撞后,物块离开挡板的最大距离为xn=6.25×10-3m,求n;(3)求长木板的长度至少应为多少?【针对训练3】.如图所示,装置的左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连接着质量M=2kg的小物块A;装置的中间是水平传送带,它与左右两边的水平面等高,并能平滑对接,传送带始终以v=2m/s的速率逆时针转动。装置的右边是一光滑的曲面,质量m=1kg的小物块B从其上距水平面h=1.0m处由静止释放。已知物块B与传送带之间的动摩擦因数μ=0.2,传送带的长度l=1.0m。设物块A、B之间发生的是对心弹性碰撞,第一次碰撞前物块A静止,g取10m/s2。(1)求物块B与物块A第一次碰撞前的速度大小;(2)通过计算说明物块B与物块A第一次碰撞后能否运动到右边曲面上;(3)如果物块A、B每次碰撞后,物块A再回到平衡位置时都会立即被锁定,而当它们再次碰撞前锁定被解除,试求出物块B第n次碰撞后运动的速度大小。【针对训练4】.(2022·南昌一模)如图所示,坐标系x轴水平,y轴竖直。在第二象限内有半径R=5cm的圆,与y轴相切于点Q(0,5eq\r(3)cm),圆内有匀强磁场,方向垂直于xOy平面向外。在x=-10cm处有一个比荷为eq\f(q,m)=1.0×108C/kg的带正电荷的粒子,正对该圆圆心方向发射,粒子的发射速率v0=4.0×106m/s,粒子在Q点进入第一象限。在第一象限某处存在一个矩形匀强磁场,磁场方向垂直于xOy平面向外,磁感应强度B0=2T。粒子经该磁场偏转后,在x轴M点(6cm,0)沿y轴负方向进入第四象限。在第四象限存在沿x轴负方向的匀强电场。有一个足够长挡板和y轴负半轴重合,粒子每次到达挡板将反弹,每次反弹时竖直分速度不变,水平分速度大小减半,方向反向(不考虑粒子的重力)。求:(1)第二象限圆内磁场的磁感应强度B的大小;(2)第一象限内矩形磁场的最小面积;(3)带电粒子在电场中运动时水平方向上的总路程。【针对训练5】(2021·山东日照市3月模拟)如图所示,在平面直角坐标系xOy的第一、二象限内,存在以虚线OM为边界的匀强电场和匀强磁场。匀强电场方向沿y轴负方向,匀强磁场方向垂直于xOy平面向里,虚线OM与x轴负方向成45°角。一质量为m、电荷量为+q的带电粒子从坐标原点O处以初速度v0沿x轴正方向运动,粒子每次到达x轴将反弹,第一次反弹无能量损失,以后每次反弹水平分速度不变、竖直分速度大小均减为反弹前的eq\f(1,2),方向相反。电场强度大小等于eq\f(mveq\o\al(2,0),16qd),磁感应强度大小等于eq\f(mv0,qd),求:(不计粒子重力,题中各物理量单位均为国际单位,计算结果可用分式表示)(1)带电粒子第三次经过OM时的坐标;(2)带电粒子第三次到达OM时经过的时间;(3)带电粒子从第二次进入电场开始,沿电场方向运动的总路程。五、微元法的应用在电磁感应中,如导体切割磁感线运动,产生感应电动势为E=BLv,感应电流I=eq\f(BLv,R),受安培力为F=ILB=eq\f(B2L2,R)v,因为是变力问题,所以可以用微元法。【例7】(2022·浙江嘉兴市教学测试)如图所示,AB、CD是固定在水平桌面上,相距为L的两根平行光滑导轨,其中MN、PQ两段用绝缘材料制成,其余部分用电阻不计的金属材料制成。ABCD区域内存在竖直方向的磁感应强度大小为B的匀强磁场。A、C两点间接有一个电动势为E、内阻为r的直流电源,B、D两点间接有一个阻值为R的定值电阻。将导体棒a静止置于导轨上MP的左侧,紧靠MP,导体棒b静止置于导轨上MNQP区域内的某一位置,两根棒的长度均等于导轨间距、质量均为m、电阻值均为R0,整个过程中,两根棒始终与导轨垂直。闭合开关S后,导体棒a向右运动,与b棒相碰后即粘合成一根“更粗的棒”,以v0的速度通过NQ继续向右运动最后静止在导轨上。试求:(1)匀强磁场的方向;(2)该“粗棒”在NQ右侧滑行的距离;(3)从闭合开关S到金属棒a通过MP的短时间内,金属棒a上产生的焦耳热?此过程中电磁辐射的能量是金属棒a上产生焦耳热的k倍。【针对训练1】如图所示,在水平面上有两条导电导轨MN、PQ,导轨间距为L,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最小距离之比为()A.1∶1 B.1∶2C.2∶1 D.3∶1【针对训练2】(2022·浙江宁波市适应性考试)打开水龙头,调节流速,流出涓涓细流,如图所示。若将乒乓球靠近竖直的水流时,水流受到乒乓球指向球心方向的“吸附力”作用会被吸引,顺着乒乓球表面流动。这个现象称为康达效应。如图所示,某同学在实验时,水流从A点顺着半径为R的乒乓球表面流动,O为乒乓球的球心(球心与A、水龙头位于同一竖直平面内),调节乒乓球A与水龙头之间的距离,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论