版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025-2026学年湖北省重点高中联考协作体高二上数学期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆=1的一个焦点为F,过原点O作直线(不经过焦点F)与椭圆交于A,B两点,若△ABF的面积是20,则直线AB的斜率为()A. B.C. D.2.现有60瓶饮料,编号从1到60,若用系统抽样的方法从中抽取6瓶进行检验,则所抽取的编号可能为()A.3,13,23,33,43,53 B.2,14,26,38,40,52C.5,8,31,36,48,54 D.5,10,15,20,25,303.等比数列的各项均为正数,且,则A. B.C. D.4.已知a、b是两条不同的直线,α、β、γ是三个不同的平面,则下列命题正确的是()A.若a∥α,a∥b,则b∥α B.若a∥α,a∥β,则α∥βC.若α⊥γ,β⊥γ,则α∥β D.若a⊥α,b⊥α,则a∥b5.已知集合,,则()A. B.C. D.6.已知等差数列的前n项和为,公差,若(,),则()A.2023 B.2022C.2021 D.20207.九连环是我国从古至今广为流传的一种益智游戏,它由九个铁丝圆环相连成串,按一定规则移动圆环的次数决定解开圆环的个数.在某种玩法中,用表示解开n(,)个圆环所需的最少移动次数,若数列满足,且当时,则解开5个圆环所需的最少移动次数为()A.10 B.16C.21 D.228.已知正四面体的底面的中心为为的中点,则直线与所成角的余弦值为()A. B.C. D.9.已知直线经过抛物线的焦点,且与该抛物线交于,两点,若满足,则直线的方程为()A. B.C. D.10.球O为三棱锥的外接球,和都是边长为的正三角形,平面PBC平面ABC,则球的表面积为()A. B.C. D.11.已知中,角,,的对边分别为,,,且,,成等比数列,则这个三角形的形状是()A.直角三角形 B.等边三角形C.等腰直角三角形 D.钝角三角形12.若变量x,y满足约束条件,则目标函数最大值为()A.1 B.-5C.-2 D.-7二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆方程为,左、右焦点分别为、,P为椭圆上的动点,若的最大值为,则椭圆的离心率为___________.14.若和或都是假命题,则的范围是__________15.已知抛物线C:的焦点为F,过M(4,0)的直线交C于A、B两点,设,的面积分别为、,则的最小值为______16.等差数列前3项的和为30,前6项的和为100,则它的前9项的和为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆(a>b>0)的右焦点为F2(3,0),离心率为e.(1)若e=,求椭圆的方程;(2)设直线y=kx与椭圆相交于A,B两点,M,N分别为线段AF2,BF2的中点,若坐标原点O在以MN为直径的圆上,且<e≤,求k的取值范围.18.(12分)已知函数f(x)=x3+ax2+2,x=2是f(x)的一个极值点.(1)求实数a的值;(2)求f(x)在区间(-1,4]上的最大值和最小值.19.(12分)等差数列的前项和记为,已知.(1)求的通项公式:(2)求,并求为何值时的值最大.20.(12分)已知圆,直线(1)证明直线与圆C一定有两个交点;(2)求直线与圆相交的最短弦长,并求对应弦长最短时的直线方程21.(12分)阿基米德(公元前287年---公元前212年,古希腊)不仅是著名的哲学家、物理学家,也是著名的数学家,他利用“逼近法”得到椭圆面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.在平面直角坐标系中,椭圆的面积等于,且椭圆的焦距为.(1)求椭圆的标准方程;(2)点是轴上的定点,直线与椭圆交于不同的两点,已知A关于轴的对称点为,点关于原点的对称点为,已知三点共线,试探究直线是否过定点.若过定点,求出定点坐标;若不过定点,请说明理由.22.(10分)已知函数,(1)求的单调区间;(2)当时,求证:在上恒成立
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】分情况讨论当直线AB的斜率不存在时,可求面积,检验是否满足条件,当直线AB的斜率存在时,可设直线AB的方程y=kx,联立椭圆方程,可求△ABF2的面积为S=2代入可求k【详解】由椭圆=1,则焦点分别为F1(-5,0),F2(5,0),不妨取F(5,0)①当直线AB的斜率不存在时,直线AB的方程为x=0,此时AB=4,=AB•5=×5=10,不符合题意;②可设直线AB的方程y=kx,由,可得(4+9k2)x2=180,∴xA=6,yA=,∴△ABF2的面积为S=2=2××5×=20,∴k=±故选:A2、A【解析】求得组距,由此确定正确选项.【详解】,即组距为,A选项符合,其它选项不符合.故选:A3、B【解析】根据等比数列的性质,结合已知条件,求得,进而求得的值.【详解】由于数列是等比数列,故,所以,故.故选B.【点睛】本小题主要考查等比数列的性质,考查对数运算,属于基础题.4、D【解析】根据空间线、面的位置关系有关定理,对四个选项逐一分析排除,由此得出正确选项.【详解】对于A选项,直线有可能平面内,故A选项错误.对于B选项,两个平面有可能相交,平行于它们的交线,故B选项错误.对于C选项,可能相交,故C选项错误.根据线面垂直的性质定理可知D选项正确.故选:D.5、B【解析】根据根式、分式的性质求定义域可得集合A,解一元二次不等式求集合B,再由集合的交运算求.【详解】∵,,∴故选:B6、C【解析】根据题意令可得,结合等差数列前n项和公式写出,进而得到关于的方程,解方程即可.【详解】因为,令,得,又,,所以,有,解得.故选:C7、D【解析】根据题意,结合数列递推公式,代入计算即可.【详解】根据题意,由,得.故选:D.8、B【解析】连接,再取中点,连接,得到为直线与所成角,再解三角形即可.【详解】连接,再取中点,连接,因为分别为VC,中点,则,且底面,所以为直线与所成角,令正四面体边长为1,则,,,所以,故选:.9、C【解析】求出抛物线的焦点,设出直线方程,代入抛物线方程,运用韦达定理和向量坐标表示,解得,即可得出直线的方程.【详解】解:抛物线的焦点,设直线为,则,整理得,则,.由可得,代入上式即可得,所以,整理得:.故选:C.【点睛】本题考查直线和抛物线的位置关系,主要考查韦达定理和向量共线的坐标表示,考查运算能力,属于中档题.10、B【解析】取中点为T,以及的外心为,的外心为,依据平面平面可知为正方形,然后计算外接球半径,最后根据球表面积公式计算.【详解】设中点为T,的外心为,的外心为,如图由和均为边长为的正三角形则和的外接圆半径为,又因为平面PBC平面ABC,所以平面,可知且,过分别作平面、平面的垂线相交于点即为三棱锥的外接球的球心,且四边形是边长为的正方形,所以外接球半径,则球的表面积为,故选:B11、B【解析】根据题意求出,结合余弦定理分情况讨论即可.【详解】解:因为,所以.由题意得,利用余弦定理得:.当,即时,,即,解得:.此时三角形为等边三角形;当,即时,,不成立.所以三角形的形状是等边三角形.故选:B.【点睛】本题主要考查利用余弦定理判断三角形的形状,属于基础题.12、A【解析】作出不等式组对应的平面区域,利用目标函数的几何意义,进行求最值即可【详解】解:由得作出不等式组对应的平面区域如图(阴影部分平移直线,由图象可知当直线,过点时取得最大值,由,解得,所以代入目标函数,得,故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用椭圆的定义结合余弦定理可求得,再利用公式可求得该椭圆的离心率的值.【详解】由椭圆的定义可得,由余弦定理可得,因为的最大值为,则,可得,因此,该椭圆的离心率为.故答案为:.14、【解析】先由和或都是假命题,求出x的范围,取交集即可.【详解】若为假命题,则有或若或是假命题,则所以的范围是即的范围是胡答案:15、【解析】设直线的方程为,,与抛物线的方程联立整理得,由三角形的面积公式求得,再根据基本不等式可得答案.【详解】解:由抛物线C:得焦点,又直线交C于A、B两点,所以直线的斜率不为0,则设直线的方程为,,联立,整理得,则,又,,所以,又,当且仅当,即时取等号,所以的最小值为.故答案为:.16、210【解析】依题意,、、成等差数列,从而可求得答案【详解】∵等差数列{an}的前3项和为30,前6项和为100,即S3=30,S6=100,又S3、S6﹣S3、S9﹣S6成等差数列,∴2(S6﹣S3)=(S9﹣S6)+S3,即140=S9﹣100+30,解得S9=210.故答案:210【点睛】本题考查等差数列的性质,熟练利用、、成等差数列是关键,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)根据右焦点为F2(3,0),以及,求得a,b,c即可.(2)联立,根据M,N分别为线段AF2,BF2中点,且坐标原点O在以MN为直径的圆上,易得OM⊥ON,则四边形OMF2N为矩形,从而AF2⊥BF2,然后由0,结合韦达定理求解.【详解】(1)由题意得c=3,,所以.又因为a2=b2+c2,所以b2=3.所以椭圆的方程为.(2)由,得(b2+a2k2)x2-a2b2=0.设A(x1,y1),B(x2,y2),所以x1+x2=0,x1x2=,依题意易知,OM⊥ON,四边形OMF2N为矩形,所以AF2⊥BF2.因为(x1-3,y1),(x2-3,y2),所以(x1-3)(x2-3)+y1y2=(1+k2)x1x2+9=0.即,将其整理为k2==-1-.因为<e≤,所以2≤a<3,12≤a2<18.所以k2≥,即k∈【点睛】关键点点睛:本题第二问的关键是由O在以MN为直径的圆上,即OM⊥ON,得到四边形OMF2N为矩形,推出AF2⊥BF2,结合韦达定理得出斜率k与离心率e的关系.18、(1);(2)最大值为18,最小值为.【解析】(1)解方程即得解;(2)利用导数求出函数的单调区间分析即得解.【小问1详解】解:因为,所以,因为在处有极值,所以,即,所以.经检验,当时,符合题意.所以.【小问2详解】解:由(1)可知,所以,令,得,当时,由得,;由得,或.所以函数在上递增,在上递减,在上递增,又.所以的最小值为,又,所以的最大值为,所以在的最大值为18,最小值为.19、(1);(2)当或时,的值最大.【解析】(1)根据等差数列前项和公式,结合等差数列的通项公式进行求解即可;(2)根据等差数列的性质进行求解即可.【小问1详解】设等差数列的公差为,因为,所以有,即;【小问2详解】由(1)可知,所以该数列是递减数列,而,当时,解得:,因此当或时,的值最大.20、(1)证明见解析(2)答案见解析【解析】(1)由,变形为求解直线过的定点,即可得解;(2)法一:由圆心和连线与直线垂直求解;法二:由圆心到直线距离最大时求解.【小问1详解】解:,所以,令,所以直线经过定点,圆可变形为,因为,所以定点在圆内,所以直线和圆C相交,有两个交点;【小问2详解】法一:圆心为,到距离为,圆心与连线的斜率为,最短弦与圆心和的连线垂直,所以,所以最短弦长为,直线的方程为法二:圆心到直线距离:,,要求d的最大值,则,当且仅当时,d的最大值为,所以最短弦长为,直线的方程为.21、(1);(2)直线恒过定点.【解析】(1)根据椭圆的焦距可求出,由椭圆的面积等于得,求出,即可求出椭圆的标准方程;(2)设直线,,进而写出为,两点坐标,将直线与椭圆的方程联立,根据韦达定理求,,由三点共线可知,将,代入并化简,得到的关系式,分析可知经过的定点坐标.【详解】(1)椭圆的面积等于,,,椭圆的焦距为,,,椭圆方程为(2)设直线,,则,,三点共线,得,直线与椭圆交于两点,,,,由,得,,,代入中,,,当,直线方程为,则重合,不符合题意;当时,直线,所以直线恒过定点.22、(1)单调减区间为,单调增区间为;(2)证明见解析.【解析】(1)求得,根据其正负,即可判断函数单调性从而求得函数单调
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年中国环境保护设备行业市场规模及投资前景预测分析报告
- 2026年中国玛钢衬塑管件行业市场前景预测及投资价值评估分析报告
- 武汉某国有企业招聘工程监理管理岗10人笔试考试参考试题及答案解析
- 2025重庆市开州区中医院公开招聘11人考试笔试备考题库及答案解析
- 2025年江西医学高等专科学校高层次人才招聘15人笔试考试参考试题及答案解析
- 2025重庆中医院第九批招聘计划笔试考试备考题库及答案解析
- 肾病中医健康科普
- 2025年道路维修改造施工合同模板
- 2026年四川中医药高等专科学校单招职业适应性考试必刷测试卷及答案1套
- 房地产市场报告 -2025年三季度深圳零售市场报告
- 北师大版数学六年级上册全册分层作业
- 会计科目对照表
- 基于中医古籍的老年衰弱中医干预方法述要
- 检具技术协议
- 《微波传输基本理论》课件
- 安徽省合肥市第四十五中学2023-2024学年八年级上学期期中物理试题
- 四年级少先队活动课教案(完整版)
- 医院内静脉血栓栓塞症防治质量评价与管理指南(2022版)
- GB/T 12223-2023部分回转阀门驱动装置的连接
- 教育版机器人入门教程(乐聚机器人)
- 保安服务意识及礼仪
评论
0/150
提交评论