版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省丽水、湖州、衢州市2025-2026学年数学高二第一学期期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将函数图象上所有点横坐标伸长到原来的2倍,纵坐标不变,再将所得图象向右平移个单位长度,得到函数的图象,则()A. B.C. D.2.经过点A(0,-3)且斜率为2的直线方程为()A. B.C. D.3.已知复数满足,其中为虚数单位,则的共轭复数为()A. B.C. D.4.,则()A. B.C. D.5.已知数列满足,且,那()A.19 B.31C.52 D.1046.已知直线与圆交于A,B两点,O为原点,且,则实数m等于()A. B.C. D.7.设集合,则AB=()A.{2} B.{2,3}C.{3,4} D.{2,3,4}8.直线在轴上的截距为()A.3 B.C. D.9.已知双曲线:的左、右焦点分别为,,点在双曲线上.若为钝角三角形,则的取值范围是A. B.C. D.10.等比数列{}中,已知=8,+=4,则的值为()A.1 B.2C.3 D.511.如图,在直三棱柱中,AB=BC,,若棱上存在唯一的一点P满足,则()A. B.1C. D.212.已知数列的通项公式为,其前项和为,则满足的的最小值为()A.30 B.31C.32 D.33二、填空题:本题共4小题,每小题5分,共20分。13.已知定点,点在直线上运动,则,两点的最短距离为________14.设椭圆的左,右焦点分别为,,过的直线l与C交于A,B两点(点A在x轴上方),且满足,则直线l的斜率为______.15.已知点是椭圆上任意一点,则点到直线距离的最小值为______16.已知两点和则以为直径的圆的标准方程是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面ABCD为矩形,侧面PAD是正三角形,平面平面ABCD,M是PD的中点(1)证明:平面PCD;(2)若PB与底面ABCD所成角的正切值为,求二面角的正弦值18.(12分)已知双曲线的左、右焦点分别为,过作斜率为的弦.求:(1)弦的长;(2)△的周长.19.(12分)已知:,:.(1)当时,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.20.(12分)已知圆:,点A是圆上一动点,点,点是线段的中点.(1)求点的轨迹方程;(2)直线过点且与点的轨迹交于A,两点,若,求直线的方程.21.(12分)在平面直角坐标系中,点在抛物线上(1)求的值;(2)若直线l与抛物线C交于,两点,,且,求的最小值22.(10分)在中,角A,B,C所对的边分别为a,b,c,且,,.(1)求角B;(2)求a,c的值及的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据三角函数图象的变换,由逆向变换即可求解.【详解】由已知的函数逆向变换,第一步,向左平移个单位长度,得到的图象;第二步,图象上所有点的横坐标缩短到原来的,纵坐标不变,得到的图象,即的图象.故.故选:A2、A【解析】直接代入点斜式方程求解即可详解】因为直线经过点且斜率为2,所以直线的方程为,即,故选:3、D【解析】由复数除法求得后可得其共轭复数【详解】由题意,∴故选:D4、B【解析】求出,然后可得答案.【详解】,所以故选:B5、D【解析】根据等比数列的定义,结合等比数列的通项公式进行求解即可.【详解】因为,所以有,因此数列是公比的等比数列,因为,所以,故选:D6、A【解析】根据给定条件求出,再求出圆O到直线l的距离即可计算作答.【详解】圆的圆心O,半径,因,则,而,则,即是正三角形,点O到直线l的距离,因此,,解得,所以实数m等于.故选:A7、B【解析】按交集定义求解即可.【详解】AB={2,3}故选:B8、A【解析】把直线方程由一般式化成斜截式,即可得到直线在轴上的截距.【详解】由,可得,则直线在轴上的截距为3.故选:A9、C【解析】根据双曲线的几何性质,结合余弦定理分别讨论当为钝角时的取值范围,根据双曲线的对称性,可以只考虑点在双曲线上第一象限部分即可.【详解】由题:双曲线:的左、右焦点分别为,,点在双曲线上,必有,若为钝角三角形,根据双曲线的对称性不妨考虑点在双曲线第一象限部分:当为钝角时,在中,设,有,,即,,所以;当时,所在直线方程,所以,,,根据图象可得要使,点向右上方移动,此时,综上所述:的取值范围是.故选:C【点睛】此题考查双曲线中焦点三角形相关计算,关键在于根据几何意义结合特殊情况分类讨论,体现数形结合思想.10、C【解析】由等比数列性质求出公比,将原式化简后计算【详解】设等比数列{}的公比为,则=,=,所以==.又+=+=(+)=8×=2,+=+=(+)=8×=1,所以+++=2+1=3.故选:C11、D【解析】设,构建空间直角坐标系,令且,求出,,再由向量垂直的坐标表示列方程,结合点P的唯一性有求参数a,即可得结果.【详解】由题设,构建如下图空间直角坐标系,若,则,,且,所以,,又存在唯一的一点P满足,所以,则,故,可得,此时,所以.故选:D12、C【解析】由条件可得得出,再由解出的范围,得出答案.【详解】由,则由,即,即,所以所以满足的的最小值为为32故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】线段最短,就是说的距离最小,此时直线和直线垂直,可先求的斜率,再求直线的方程,然后与直线联立求交点即可【详解】定点,点在直线上运动,当线段最短时,就是直线和直线垂直,的方程为:,它与联立解得,所以的坐标是,所以,故答案为:14、【解析】设出直线的方程并与椭圆方程联立,结合根与系数关系以及求得直线的斜率.【详解】椭圆,由于在轴上方且直线的斜率存在,所以直线的斜率不为,设直线的方程为,且,由,消去并化简得,设,,则①,②,由于,所以③,由①②③解得所以直线的方程为,斜率为.故答案为:15、【解析】求椭圆上平行于的直线方程,利用平行线的距离公式求椭圆上点到直线的最小值.【详解】设与椭圆相切,且平行于的直线为,联立椭圆整理可得:,则,∴,又两平行线的距离,∴到直线距离的最小值为.故答案为:.16、【解析】根据的中点是圆心,是半径,即可写出圆的标准方程.【详解】因为和,故可得中点为,又,故所求圆的半径为,则所求圆的标准方程是:.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)依题意可得,再根据面面垂直的性质得到平面,即可得到,即可得证;(2)取的中点为,连接,根据面面垂直的性质得到平面,连接,即可得到为与底面所成角,令,,利用锐角三角函数的定义求出,建立如图所示空间直角坐标系,利用空间向量法求出二面角的余弦值,即可得解;【小问1详解】解:证明:在正中,为的中点,∴∵平面平面,平面平面,且.∴平面,又∵平面∴.又∵,且,平面.∴平面【小问2详解】解:如图,取的中点为,连接,在正中,,平面平面,平面平面,∴平面,连接,则为与底面所成角,即.不妨取,,,,∴以为原点建立如图所示的空间直角坐标系,则有,,,,,,∴,设面的一个法向量为,则由令,则,又因为面,取作为面的一个法向量,设二面角为,∴,∴,因此二面角的正弦值为18、(1);(2).【解析】(1)联立直线方程与双曲线方程,求得交点的坐标,再用两点之间的距离公式即可求得;(2)根据(1)中所求,利用两点之间的距离公式,即可求得三角形周长.【小问1详解】设点的坐标分别为,由题意知双曲线的左、右焦点坐标分别为、,直线的方程,与联立得,解得,代入的方程为分别解得.所以.【小问2详解】由(1)知,,,所以△的周长为.19、(1);(2).【解析】(1)将代入即可求解;(2)首先结合已知条件分别求出命题和的解,写出,然后利用充分不必要的特征即可求解.【详解】(1)由题意可知,,解得,故实数的取值范围为;(2)由,解得或,由,解得,故命题:或;命题:,从而:或,因为是的充分不必要条件,所以或或,从而,解得,故实数的取值范围为.20、(1);(2)x=1或y=1.【解析】(1)设线段中点为,点,用x,y表示,代入方程即可;(2)分l斜率存在和不存在进行讨论,根据弦长求出l方程.【小问1详解】设线段中点为,点,,,,,,即点C的轨迹方程为.【小问2详解】直线l的斜率不存在时,l为x=1,代入得,则弦长满足题意;直线l斜率存在时,设直线l斜率为k,其方程为,即,圆的圆心到l的距离,则;综上,l为x=1或y=1.21、(1)1(2)【解析】(1)将点代入即可求解;(2)利用向量数量积为3求出,再
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中职人工智能技术应用(AI基础操作)试题及答案
- 2025年大学会展经济与管理(管理实务)试题及答案
- 2025年高职建筑工程技术(建筑施工组织与管理)试题及答案
- 2025年高职水产生产管理应用(应用技术)试题及答案
- 2025年大学大三(物流信息技术)物流信息系统设计试题及答案
- 2025年高职第二学年(纺织工程技术)纺纱工艺基础阶段测试试题及答案
- 2025年大学音乐学(音乐史)试题及答案
- 2025年中职(地质勘查)地质勘查技术试题及答案
- 2025年大学大一(经济学基础)单元基础测试卷
- 2025年高职(船舶动力工程技术)船舶动力装置维护试题及答案
- 单位网络安全宣传课件
- 2025年浙江省杭州市辅警协警笔试笔试真题(含答案)
- 医院药剂科工作总结
- 2026年内蒙古科技职业学院单招职业适应性考试参考题库及答案解析
- 单位公务出行租赁社会车辆审批表范文
- 广东省广州市花都区2024-2025学年七年级上学期期末考试数学试卷(含答案)
- 2025年中国对外贸易中心集团有限公司招聘84人备考题库完整答案详解
- 影视合作协议合同
- 2025年1月辽宁省普通高中学业水平合格性考试数学试卷(含答案详解)
- 广东省广州市2026届高三年级上学期12月调研测试(广州零模)物理试卷
- 【生 物】八年级上册生物期末复习 课件 -2025-2026学年人教版生物八年级上册
评论
0/150
提交评论