版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省杭州五校2025-2026学年高二上数学期末达标检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数满足方程,则的最大值为()A.3 B.2C. D.2.在空间直角坐标系中,方程所表示的图形是()A圆 B.椭圆C.双曲线 D.球3.设是椭圆的两个焦点,是椭圆上一点,且.则的面积为()A.6 B.C.8 D.4.已知是等比数列,,,则()A. B.C. D.5.如果,,…,是抛物线C:上的点,它们的横坐标依次为,,…,,点F是抛物线C的焦点.若=10,=10+n,则p等于()A.2 B.C. D.46.函数的导函数为,若已知图象如图,则下列说法正确的是()A.存在极大值点 B.在单调递增C.一定有最小值 D.不等式一定有解7.已知随机变量X,Y满足,,且,则的值为()A.0.2 B.0.3C.0..5 D.0.68.已知等比数列的首项为1,公比为2,则=()A. B.C. D.9.过点(-2,1)的直线中,被圆x2+y2-2x+4y=0截得的弦最长的直线的方程是()A.x+y+1=0 B.x+y-1=0C.x-y+1=0 D.x-y-1=010.直线被圆截得的弦长为()A.1 B.C.2 D.311.在等差数列中,,且,,,构成等比数列,则公差()A.0或2 B.2C.0 D.0或12.命题“若,则”的否命题是()A.若,则 B.若,则C.若,则 D.若,则二、填空题:本题共4小题,每小题5分,共20分。13.设是定义在上的可导函数,且满足,则不等式解集为_______14.空间四边形中,,,,,,,则与所成角的余弦值等于___________15.根据某市有关统计公报显示,随着“一带一路”经贸合作持续深化,该市对外贸易近几年持续繁荣,2017年至2020年每年进口总额(单位:千亿元)和出口总额(单位:千亿元)之间的一组数据如下:2017年2018年2019年2020年若每年的进出口总额,满足线性相关关系,则______;若计划2022年出口总额达到千亿元,预计该年进口总额为______亿元16.若实数、满足,则的取值范围为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的三个内角,,的对边分别为,,,且满足.(1)求角的大小;(2)若,,,求的长.18.(12分)在平面直角坐标系中,动点,满足,记点的轨迹为(1)请说明是什么曲线,并写出它的方程;(2)设不过原点且斜率为的直线与交于不同的两点,,线段的中点为,直线与交于两点,,请判断与的关系,并证明你的结论19.(12分)已知函数.若图象上的点处的切线斜率为(1)求a,b的值;(2)的极值20.(12分)已知抛物线上的点M(5,m)到焦点F的距离为6.(1)求抛物线C的方程;(2)过点作直线l交抛物线C于A,B两点,且点P是线段AB的中点,求直线l方程.21.(12分)已知圆,圆心在直线上(1)求圆的标准方程;(2)求直线被圆截得的弦的长22.(10分)已知数列满足,.(1)证明:数列为等差数列.(2)求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】将方程化为,由圆的几何性质可得答案.【详解】将方程变形为,则圆心坐标为,半径,则圆上的点的横坐标的范围为:则x的最大值是故选:D.2、D【解析】方程表示空间中的点到坐标原点的距离为2,从而可知图形的形状【详解】由,得,表示空间中的点到坐标原点的距离为2,所以方程所表示的图形是以原点为球心,2为半径的球,故选:D3、B【解析】利用椭圆的几何性质,得到,,进而利用得出,进而可求出【详解】解:由椭圆的方程可得,所以,得且,,在中,由余弦定理可得,而,所以,,又因为,,所以,所以,故选:B4、D【解析】由,,可求出公比,从而可求出等比数的通项公式,则可求出,得数列是一个等比数列,然后利用等比数的求和公式可求得答案【详解】由题得.所以,所以.所以,所以数列是一个等比数列.所以=.故选:D5、A【解析】根据抛物线定义得个等式,相加后,利用已知条件可得结果.【详解】抛物线C:的准线为,根据抛物线的定义可知,,,,,所以,所以,所以,所以.故选:A【点睛】关键点点睛:利用抛物线的定义解题是解题关键,属于基础题.6、C【解析】根据图象可得的符号,从而可得的单调区间,再对选项进行逐一分析判断正误得出答案.【详解】由所给的图象,可得当时,,当时,,当时,,当时,,可得在递减,递增;在递减,在递增,B错误,且知,所以存在极小值和,无极大值,A错误,同时无论是否存在,可得出一定有最小值,但是最小值不一定为负数,故C正确,D错误.故选:C.7、D【解析】利用正态分布的计算公式:,【详解】且又故选:D8、D【解析】数列是首项为1,公比为4的等比数列,然后可算出答案.【详解】因为等比数列的首项为1,公比为2,所以数列是首项为1,公比为4的等比数列所以故选:D9、A【解析】当直线被圆截得的最弦长最大时,直线要经过圆心,即圆心在直线上,然后根据两点式方程可得所求【详解】由题意得,圆的方程为,∴圆心坐标为∵直线被圆截得的弦长最大,∴直线过圆心,又直线过点(-2,1),所以所求直线的方程为,即故选:A10、C【解析】利用直线和圆相交所得的弦长公式直接计算即可.【详解】由题意可得圆的圆心为,半径,则圆心到直线的距离,所以由直线和圆相交所得的弦长公式可得弦长为:.故选:C.11、A【解析】根据等比中项的性质和等差数列的通项公式建立方程,可解得公差d得选项.【详解】解:因为在等差数列中,,且,,,构成等比数列,所以,即,所以,解得或,故选:A.12、B【解析】根据原命题的否命题是条件结论都要否定【详解】解:因为原命题的否命题是条件结论都要否定所以命题“若,则”的否命题是若,则;故选:B二、填空题:本题共4小题,每小题5分,共20分。13、【解析】构造函数,结合题意求得,由此判断出在上递增,由此求解出不等式的解集.【详解】令,,故函数在上单调递增,不等式可化为,则,解得:【点睛】本小题主要考查构造函数法解不等式,考查化归与转化的数学思想方法,属于基础题.14、【解析】计算出的值,利用空间向量的数量积可得出的值,即可得解.【详解】,,所以,,所以,.所以,与所成角的余弦值为.故答案为:.15、①.1.6②.3.65千##3650【解析】根据给定数表求出样本中心点,代入即可求得,取可求出该年进口总额.【详解】由数表得:,,因此,回归直线过点,由,解得,此时,,当时,即,解得,所以,预计该年进口总额为千亿元.故答案为:1.6;3.65千16、【解析】直接利用换元法以及基本不等式,求出结果【详解】解:设,由于,所以,由于,(当且仅当时取等号)所以(当且仅当时取等号),(当且仅当时取等号),故,,所以,整理得:故的取值范围为的取值范围故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由正弦定理化边为角后,结合两角和的正弦公式、诱导公式可求得;(2)用表示出,然后平方由数量积的运算求得向量的模(线段长度)【详解】(1)因为,所以由正弦定理可得,即,因为,所以,,∵,故;(2)由,得,所以,所以.18、(1)椭圆,(2),证明见解析【解析】(1)结合椭圆第一定义直接判断即可求出的轨迹为;(2)设直线的方程为,,,联立椭圆方程,写出韦达定理;由中点公式求出点,进而得出直线方程,联立椭圆方程求出,结合弦长公式可求,可转化为,结合韦达定理可化简,进而得证.【小问1详解】设,,则因为,满足,即动点表示以点,为左、右焦点,长轴长为4,焦距为的椭圆,其轨迹的方程为;【小问2详解】可以判断出,下面进行证明:设直线的方程为,,,由方程组,得①,方程①判别式为,由,即,解得且由①得,,所以点坐标为,直线方程为,由方程组,得,,所以又所以.19、(1)(2)极大值为,极小值为【解析】(1)求出函数的导函数,再根据图象上的点处的切线斜率为,列出方程组,解之即可得解;(2)求出函数的导函数,根据导函数的符号求得函数的单调区间,再根据极值的定义即可得解.【小问1详解】解:,,;【小问2详解】解:由(1)得,令,得或,,-1(-1,3)3+0-0+的极大值为,极小值为.20、(1)(2)【解析】(1)由抛物线定义有求参数,即可写出抛物线方程.(2)由题意设,联立抛物线方程,结合韦达定理、中点坐标求参数k,即可得直线l方程【小问1详解】由题设,抛物线准线方程为,∴抛物线定义知:可得,故【小问2详解】由题设,直线l的斜率存在且不为0,设联立方程,得,整理得,则.又P是线段AB的中点,∴,即故l21、(1);(2)【解析】(1)由圆的一般式方程求出圆心代入直线即可求出得值,即可求解;(2)先计算圆心到直线的距离,利用即可求弦长.【详解】(1)由圆,可得所以圆心为,半径又圆心在直线上,即,解得所以圆的一般方程为,故圆的标准方程为(2)由(1)知,圆心,半径圆心到直线的距离则直线被圆截得的弦的长为所以,直线被圆截得弦的长为【点睛】方法点睛:圆的弦长
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年度滁州市琅琊区事业单位公开招聘工作人员10名笔试备考题库及答案解析
- 2025年太宰治侦探社笔试及答案
- 2026年提升建筑工程安全质量的案例分析
- 2025年岳阳市人事考试及答案
- 2026山西白求恩医院山西医学科学院急需紧缺高层次人才招聘5人笔试备考试题及答案解析
- 2026年扁平化组织的高效协作总结
- 2025年高速公路发展集团笔试及答案
- 2026浙江杭州市之江外语实验学校招聘教师1人(民办)笔试模拟试题及答案解析
- 2026上半年海南事业单位联考万宁市招聘73人(第1号)考试备考题库及答案解析
- 2025年南充事业单位检验考试题及答案
- 瑞幸食品安全培训题库课件
- (一模)2026年沈阳市高三年级教学质量监测(一)化学试卷(含答案)
- 2026年安徽粮食工程职业学院单招综合素质考试备考题库带答案解析
- 2025年秋八年级全一册信息科技期末测试卷(三套含答案)
- 2026年及未来5年市场数据中国海水淡化设备市场发展前景预测及投资战略咨询报告
- 2026年青岛职业技术学院单招职业技能考试题库含答案详解
- 制造总监年终总结
- 仇永锋一针镇痛课件
- 中小学校食堂建设配置标准(试行)
- 露天矿物开采辅助工技术考核试卷及答案
- GB/T 5231-2022加工铜及铜合金牌号和化学成分
评论
0/150
提交评论