2025年青海省海北市数学高二上期末预测试题含解析_第1页
2025年青海省海北市数学高二上期末预测试题含解析_第2页
2025年青海省海北市数学高二上期末预测试题含解析_第3页
2025年青海省海北市数学高二上期末预测试题含解析_第4页
2025年青海省海北市数学高二上期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025年青海省海北市数学高二上期末预测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知直线是圆的对称轴,过点A作圆C的一条切线,切点为B,则|AB|=()A.1 B.2C.4 D.82.是等差数列,且,,则的值()A. B.C. D.3.若,,则有()A. B.C. D.4.已知函数在处有极小值,则c的值为()A.2 B.4C.6 D.2或65.函数在上的极大值点为()A. B.C. D.6.直线在轴上的截距为,在轴上的截距为,则有()A., B.,C., D.,7.已知,,若,则()A.9 B.6C.5 D.38.已知,,点为圆上任意一点,设,则的最大值为()A. B.C. D.9.在下列命题中正确的是()A.已知是空间三个向量,则空间任意一个向量总可以唯一表示为B.若所在的直线是异面直线,则不共面C.若三个向量两两共面,则共面D.已知A,B,C三点不共线,若,则A,B,C,D四点共面10.以下四个命题中,正确的是()A.若,则三点共线B.C.为直角三角形的充要条件是D.若为空间的一个基底,则构成空间的另一个基底11.已知为等腰直角三角形的直角顶点,以为旋转轴旋转一周得到几何体,是底面圆上的弦,为等边三角形,则异面直线与所成角的余弦值为()A. B.C. D.12.若,,且,则()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.有一组数据,其平均数为3,方差为2,则新的数据的方差为________.14.已知等差数列的通项公式为,那么它的前项和___________.15.将全体正整数排成一个三角形数阵(如图):按照以上排列的规律,第9行从左向右的第2个数为__________.16.等差数列前3项的和为30,前6项的和为100,则它的前9项的和为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,证明:函数图象恒在函数的图象的下方;(2)讨论方程的根的个数.18.(12分)自2021年秋季起,江西省普通高中起始年级全面实施新课程改革,为了迎接新高考,某校举行物理和化学等选科考试,其中600名学生化学成绩(满分100分)的频率分布直方图如图所示,其中成绩分组区间是:第一组,第二组,第三组,第四组,第五组.已知图中前三个组的频率依次构成等差数列,第一组和第五组的频率相同(1)求a,b的值;(2)估算高分(大于等于80分)人数;(3)估计这600名学生化学成绩的平均值(同一组中的数据用该组区间的中点值作代表)和中位数(中位数精确到0.1)19.(12分)已知直线与双曲线相交于、两点.(1)当时,求;(2)是否存在实数,使以为直径的圆经过坐标原点?若存在,求出的值;若不存在,说明理由.20.(12分)已知的展开式中二项式系数和为16(1)求展开式中二项式系数最大的项;(2)设展开式中的常数项为p,展开式中所有项系数的和为q,求21.(12分)在中,角A,B,C所对的边分别为a,b,c,且.(1)求角A的大小;(2)若,且的面积为,求的周长.22.(10分)已知圆C的圆心在y轴上,且过点,(1)求圆C的方程;(2)已知圆C上存在点M,使得三角形MAB的面积为,求点M的坐标

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】首先将圆心坐标代入直线方程求出参数a,求得点A的坐标,由切线与圆的位置关系构造直角三角形从而求得.【详解】圆即,圆心为,半径为r=3,由题意可知过圆的圆心,则,解得,点A坐标为,,切点为B则,故选:C【点睛】本题考查直线与圆的位置关系,属于基础题.2、B【解析】根据等差数列的性质计算【详解】因为是等差数列,所以,,也成等差数列,所以故选:B3、D【解析】对待比较的代数式进行作差,利用不等式基本性质,即可判断大小.【详解】因为,又,,故,则,即;因为,又,,故,则;综上所述:.故选:D.4、A【解析】根据求出c,进而得到函数的单调性,然后根据极小值的定义判断答案.【详解】由题意,,则,所以或.若c=2,则,时,,单调递增,时,,单调递减,时,,单调递增.函数在处有极小值,满足题意;若c=6,则,函数R上单调递增,不合题意.综上:c=2.故选:A.5、C【解析】求出函数的导数,利用导数确定函数的单调性,即可求出函数的极大值点【详解】,∴当时,,单调递减,当时,,单调递增,当时,,单调递减,∴函数在的极大值点为故选:C6、B【解析】将直线方程的一般形式化为截距式,由此可得其在x轴和y轴上的截距.【详解】直线方程化成截距式为,所以,故选:B.7、D【解析】根据空间向量垂直的坐标表示即可求解.【详解】.故选:D.8、C【解析】根据题意可设,再根据,求出,再利用三角函数的性质即可得出答案.【详解】解:由点为圆上任意一点,可设,则,由,得,所以,则,则,其中,所以当时,取得最大值为22.故选:C.9、D【解析】对于A,利用空间向量基本定理判断,对于B,利用向量的定义判断,对于C,举例判断,对于D,共面向量定理判断【详解】对于A,若三个向量共面,在平面,则空间中不在平面的向量不能用表示,所以A错误,对于B,因为向量是自由向量,是可以自由平移,所以当所在的直线是异面直线时,有可能共面,所以B错误,对于C,当三个向量两两共面时,如空间直角坐标系中的3个基向量两两共面,但这3个向量不共面,所以C错误,对于D,因为A,B,C三点不共线,,且,所以A,B,C,D四点共面,所以D正确,故选:D10、D【解析】利用向量共线的推论可判断A,利用数量积的定义可判断B,利用充要条件的概念可判断C,利用基底的概念可判断D.【详解】对于A,若,,所以三点不共线,故A错误;对于B,因为,故B错误;对于C,由可推出为直角三角形,由为直角三角形,推不出,所以为直角三角形的充分不必要条件是,故C错误;对于D,若为空间的一个基底,则不共面,若不能构成空间的一个基底,设,整理可得,即共面,与不共面矛盾,所以能构成空间的另一个基底,故D正确.故选:D.11、B【解析】设,过点作的平行线,与平行的半径交于点,找出异面直线与所成角,然后通过解三角形可得出所求角的余弦值.【详解】设,过点作的平行线,与平行的半径交于点,则,,所以为异面直线与所成的角,在三角形中,,,所以.故选:B.【点睛】本题考查异面直线所成角余弦值的计算,一般通过平移直线的方法找到异面直线所成的角,考查计算能力,属于中等题.12、A【解析】由于对数函数的存在,故需要对进行放缩,结合(需证明),可放缩为,利用等号成立可求出,进而得解.【详解】令,,故在上单调递减,在上单调递增,,故,即,当且仅当,等号成立.所以,当且仅当时,等号成立,又,所以,即,所以,又,所以,,故故选:A二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】由已知得,,然后计算的平均数和方差可得答案.【详解】由已知得,,所以,.故答案为:2.14、【解析】由题意知等差数列的通项公式,即可求出首项,再利用等差数列求和公式即可得到答案.【详解】已知等差数列的通项公式为,..故答案为:.15、38【解析】根据数阵的规律求得正确答案.【详解】数阵第行有个数,第行有个数,并且数字从开始,每次递增.前行共有个数,第行从左向右的最后一个数是,所以第行从左向右的第个数为.故答案为:16、210【解析】依题意,、、成等差数列,从而可求得答案【详解】∵等差数列{an}的前3项和为30,前6项和为100,即S3=30,S6=100,又S3、S6﹣S3、S9﹣S6成等差数列,∴2(S6﹣S3)=(S9﹣S6)+S3,即140=S9﹣100+30,解得S9=210.故答案:210【点睛】本题考查等差数列的性质,熟练利用、、成等差数列是关键,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)答案见解析【解析】(1)构造函数,利用导数判断单调性,并求出函数的最大值小于零,即,即可得证;(2)将方程根的个数转化为函数图象与交点的问题,大致画出函数的图象,即可求解.【小问1详解】设,其中,则,在区间上,单调递减,又∵,即时,,∴,∴在区间上函数的图象恒在函数的图象的下方.【小问2详解】由得,即,令,则,令,得,当时,,单调递增,当时,,单调递减,∴在处取得最小值,∴,又∵当时,,当时,,有零点存在性定理可知函数有唯一的零点,∴的大致图象如图所示,∴当时,方程的根的个数为0;当或时,方程的根的个数为1;当时,方程的根的个数为2.18、(1)(2)90(3)平均值69.5;中位数69.4【解析】(1)由各矩形面积和为1列式即可;(2)由高分频率乘以600即可;(3)由平均数与中位数的估算方法列式即可.【小问1详解】由题意可知:解得小问2详解】高分的频率约为:故高分人数为:【小问3详解】平均值为,设中位数为x,则故中位数为69.419、(1);(2)不存在,理由见解析.【解析】(1)当时,将直线的方程与双曲线的方程联立,列出韦达定理,利用弦长公式可求得;(2)假设存在实数,使以为直径的圆经过坐标原点,设、,将直线与双曲线的方程联立,列出韦达定理,由已知可得出,利用平面向量数量积的坐标运算结合韦达定理可得出,即可得出结论.【小问1详解】解:设点、,当时,联立,可得,,由韦达定理可得,,所以,.【小问2详解】解:假设存在实数,使以为直径的圆经过坐标原点,设、,联立得,由题意可得,解得且,由韦达定理可知,因为以为直径的圆经过坐标原点,则,所以,,整理可得,该方程无实解,故不存在.20、(1)(2)【解析】(1)由二项式系数和的性质得出,再由性质求出展开式中二项式系数最大的项;(2)由通项得出,利用赋值法得出,再求解【小问1详解】由题意可得,解得.,展开式中二项式系数最大的项为;【小问2详解】,其展开式的通项为,令,得∴常数项令,可得展开式中所有项系数的和为,∴21、(1)(2)【解析】(1)由,根据正弦定理化简得,利用余弦定理求得,即可求解;(2)由的面积,求得,结合余弦定理,求得,即可求解.【小问1详解】解:因为,所以.由正弦定理得,可得,所以,因为,所以.【小问2详解】解:由的面积,所以.由余弦定理得,所以,所以,所以的周长为.22、(1);(2)或.【解析】(1)两点式求AB所在直线的斜率,结合点坐标求AB的垂直平分线,根据已知确定圆心、半径即可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论