版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
苏教版七年级下册期末数学专题资料真题A卷及答案解析一、选择题1.下列计算中,正确的是().A. B.C. D.答案:B解析:B【分析】分别根据幂的乘方运算法则,同底数幂的乘法法则,积的乘方运算法则以及合并同类项法则逐一判断即可.同底数幂相乘,底数不变,指数相加;幂的乘方,底数不变,指数相乘;积的乘方,把每一个因式分别乘方,再把所得的幂相乘;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【详解】解:A.,故本选项不合题意;B.,故本选项符合题意;C.,故本选项不合题意;D.,故本选项不合题意;故选:B.【点睛】本题考查了合并同类项,同底数幂的乘法以及幂的乘方与积的乘方,掌握相关运算法则是解答本题的关键.2.如图所示,下列四个选项中不正确的是()A.与是同旁内角 B.与是内错角C.与是对顶角 D.与是邻补角答案:B解析:B【分析】根据同旁内角,内错角,对顶角,邻补角的定义逐项分析.【详解】A.与是同旁内角,故该选项正确,不符合题意;B.与不是内错角,故该选项不正确,符合题意;C.与是对顶角,故该选项正确,不符合题意;D.与是邻补角,故该选项正确,不符合题意;故选B.【点睛】本题考查了同旁内角,内错角,对顶角,邻补角的定义,理解定义是解题的关键.两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的两侧,那么这两个角叫做内错角.两条直线被第三条直线所截,如果两个角分别在两条直线之间,且在第三条直线的同旁,那么这两个角叫做同旁内角.两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角.3.已知方程组的解满足x+y=2,则k的值为()A.4 B.-4 C.2 D.-2答案:A解析:A【分析】方程组中两方程相减消去k得到关于x与y的方程,与x+y=2联立求出解,即可确定出k的值.【详解】,①-②得:x+2y=2,,解得,则k=2x+3y=4,故选A.【点睛】考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.4.下列乘法运算中不能用平方差公式计算的是()A.(x+1)(x﹣1) B.(x+1)(﹣x+1)C.(﹣x+1)(﹣x﹣1) D.(x+1)(﹣x﹣1)答案:D解析:D【分析】根据平方差公式的特点逐个判断即可.【详解】解:选项A:(x+1)(x-1)=x2-1,故选项A可用平方差公式计算,不符合题意,选项B:(x+1)(-x+1)=1-x2,故选项B可用平方差公式计算,不符合题意,选项C:(-x+1)(-x-1)=x2-1,故选项C可用平方差公式计算,不符合题意,选项D:(x+1)(-x-1)=-(x+1)2,故选项D不可用平方差公式计算,符合题意,故选:D.【点睛】此题考查平方差公式,属于基础题,关键是根据平方差公式的形式解答.5.若关于x的一元一次不等式组无解,则a的取值范围是()A.a>2 B.a≥2 C.a<﹣2 D.a≤﹣2答案:D解析:D【分析】先把a当作已知条件表示出不等式的解集,再由不等式组无解即可得出结论.【详解】解:,由①得,x>﹣2;由②得,x<a,∵不等式组无解,∴a≤﹣2.故选:D.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.下列命题中,真命题有()①邻补角的角平分线互相垂直;②两条直线被第三条直线所截,内错角相等;③两边分别平行的两角相等;④如果x2>0,那么x>0;⑤经过直线外一点,有且只有一条直线与这条直线平行.A.2个 B.3个 C.4个 D.5个答案:A解析:A【分析】根据平行线的性质、对顶角的概念和性质、平方的概念判断即可.【详解】①邻补角的角平分线互相垂直,正确,是真命题;②两条平行直线被第三条直线所截,内错角相等,故错误,是假命题;③两边分别平行的两角相等或互补,故错误,是假命题;④如果x2>0,那么x>0,错误,是假命题;⑤经过直线外一点,有且只有一条直线与这条直线平行,正确,是真命题,正确的有2个,故选A.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,a5=﹣|a4+4|,…,依此类推,则a2021=()A.﹣1009 B.﹣1010 C.﹣2020 D.﹣2021答案:B解析:B【分析】列出前几个数字寻找规律,根据规律求出a2021.【详解】解:a1=0,a2=-|a1+1|=-1,a3=-|a2+2|=-|-1+2|=-1,a4=-|a3+3|=-|-1+3|=-2,a5=|a4+4|=-|-2+4|=-2,…,∴a2n+1=a2n=,∴a2021=a2020==-1010,故选:B.【点睛】本题考查数字的变化规律问题,解题关键是通过题中要求列出前几个数字寻找规律.8.如图,将甲图中阴影部分无重叠、无缝隙地拼成乙图,根据两个图形中阴影部分的面积关系得到的等式是()A. B.C. D.答案:C解析:C【分析】由图甲可知阴影部分的面积=大正方形的面积-两个长方形的面积+两个长方形重合部分的面积,由图乙可知阴影部分是边长为的正方形,从而可知其面积为,从而得出结论.【详解】解:由图甲可知:阴影部分的面积为:,图乙中阴影部分的面积为:,所以,故选:C.【点睛】此题考查的是完全平方公式的几何意义,掌握阴影部分面积的两种求法是解决此题的关键.二、填空题9.计算:a•3a=______.解析:3a2【分析】根据单项式乘以单项式的运算法则即可求出答案.【详解】解:原式=3a2,故答案为:3a2.【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则.10.以下四个命题:①-的立方根是;②要调查一批灯泡的使用寿命适宜用抽样调查;③两条直线被第三条直线所截,同旁内角互补;④已知∠ABC与其内部一点D,过点D作DE∥BA,作DF∥BC,则∠EDF=∠B.其中假命题的序号______.答案:A解析:①③④【分析】利用立方根的定义对①进行判断;根据普查和抽样调查的特点对②进行判断;根据平行线的性质对③进行判断.画好符合题意的图形,利用推理的方法判断④.【详解】解:的立方根是,所以①为假命题;要调查一批灯泡的使用寿命适宜用抽样调查,所以②为真命题;两条平行直线被第三条直线所截,同旁内角互补,所以③为假命题;已知∠ABC与其内部一点D,过D点作DE∥BA,作DF∥BC,则或所以④为假命题.理由如下:.故答案为①③④.【点睛】本题考查了命题的“真”“假”判断.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可,掌握以上知识是解题的关键.11.在各个内角都相等的多边形中,如果一个外角等于一个内角的20%,那么这个多边形是________边形.解析:十二【分析】首先设多边形的内角为x°,则它的外角为0.2x°,根据多边形的内角与它相邻的外角互补可得方程x+0.2x°=180,解方程可得内角的度数,进而得到外角的度数,用外角和除以外角的度数可得边数.【详解】解:设多边形的内角为x°,则它的外角为0.2x°,由题意得:x+0.2x=180,解得:x=150,则它的外角是:180°-150°=30°,多边形的边数为:360°÷30°=12,故答案为:十二.【点睛】此题主要考查了多边形的内角和外角,关键是计算出多边形的外角度数.12.当时,的值为_____________解析:10000【分析】由题意,先把多项式因式分解,再把m的值代入计算,即可得到答案.【详解】解:,∵,∴;故答案为:10000.【点睛】本题考查了公式法因式分解,以及求代数式的值,解题的关键是正确的把多项式进行因式分解.13.已知关于的方程组的解为,则的平方根为________.解析:【分析】根据方程组的解,可以把解代入方程组,构成新的方程组,求出m、n,再代入求平方根.【详解】将代入方程组得,解得.所以所以的平方根为故答案为:【点睛】考核知识点:解方程组,平方根.解方程组,理解平方根的定义是关键.14.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥(图中虚线),若荷塘周长为900m,且桥宽忽略不计,则小桥的总长为_______m.解析:450【分析】根据图形得出荷塘中小桥的总长为矩形的长与宽的和,进而得出答案.【详解】解:∵荷塘周长为900m,∴小桥总长为:900÷2=450(m).故答案为:450.【点睛】此题主要考查了生活中的平移现象,得出荷塘中小桥的总长为矩形的长与宽的和是解题的关键.15.如图,一把三角尺的两条直角边分别经过正八边形的两个顶点,则∠1+∠2=_____°.答案:180【分析】先求正八边形的每个内角,再结合三角形形内角和定理可得.【详解】由已知可得∠1+∠2=(8-2)×180°÷8×2-(180°-90°)=180°故答案为:180【点睛】解析:180【分析】先求正八边形的每个内角,再结合三角形形内角和定理可得.【详解】由已知可得∠1+∠2=(8-2)×180°÷8×2-(180°-90°)=180°故答案为:180【点睛】考核知识点:正多边形内角和.熟记正多边形内角和公式是关键.16.如图,在中,已知D,E,F分别是,,的中点,若的面积为,则(阴影部分)的面积等于__________.答案:4【分析】由三角形的面积公式,等底同高的两个三角形的面积相等,面积的和差求出△BEF(阴影部分)的面积等于4cm2.【详解】解:如图所示:∵点D是BC的中心,∴BD=CD,∴S△AB解析:4【分析】由三角形的面积公式,等底同高的两个三角形的面积相等,面积的和差求出△BEF(阴影部分)的面积等于4cm2.【详解】解:如图所示:∵点D是BC的中心,∴BD=CD,∴S△ABD=S△ACD=S△ABC,又∵S△ABC=16,∴S△ABD=S△ACD=×16=8,同理可得:S△BDE=4,S△CDE=4,又∵S△BCE=S△BDE+S△CDE,∴S△BCE=4+4=8,又∵F是EC的中点,∵S△BEF=S△BCE=×8=4cm2,故答案为:4.【点睛】本题综合考查了三角形的面积公式,等底同高的两个三角形的面积相等,面积的和差等相关知识,重点掌握三角形面积公式及等底同高的两个三角形的面积求法.17.计算:(1)-22+30-(2)(-2a)3-(-a)(3a)2(3)(2a-3b)2-4a(a-2b)(4)(m-2n+3)(m+2n-3).答案:(1)-1;(2)-a3;(3)-4ab+9b2;(4)m2-4n2+12n-9.【详解】试题分析:本题主要考察整式的乘除,用相应的法则计算即可.(1)原式="4"+1+2=-1;(2解析:(1)-1;(2)-a3;(3)-4ab+9b2;(4)m2-4n2+12n-9.【详解】试题分析:本题主要考察整式的乘除,用相应的法则计算即可.(1)原式="4"+1+2=-1;(2)原式=-8a3+9a3=-a3;(3)原式=4a2-12ab+9b2-4a2+8ab=-4ab+9b2;(4)原式=m2-(2n-3)2=m2-4n2+12n-9.考点:整式的乘除.18.把下列各式分解因式:(1)2x2-32(2)2x2-2x+(3);(4).答案:(1);(2);(3);(4)【分析】(1)首先提出公因式,然后进一步利用平方差公式进行因式分解即可;(2)首先提出公因式,然后利用完全平方公式进行因式分解即可;(3)首先将原式变形为,然后解析:(1);(2);(3);(4)【分析】(1)首先提出公因式,然后进一步利用平方差公式进行因式分解即可;(2)首先提出公因式,然后利用完全平方公式进行因式分解即可;(3)首先将原式变形为,然后进一步利用完全平方公式进行因式分解即可;(4)首先将原式变形为,然后先后利用完全平方公式以及平方差公式进行因式分解即可.【详解】(1)==;(2)==;(3)===;(4)===.【点睛】本题主要考查了因式分解,熟练掌握相关方法及公式是解题关键.19.解方程组:(1)(2).答案:(1);(2)【分析】(1)方程组利用代入消元法求解即可;(2)方程组利用加减消元法求解即可.【详解】解:(1),将①代入②得:,解得:,代入①中,解得:,∴方程组的解为:;(2解析:(1);(2)【分析】(1)方程组利用代入消元法求解即可;(2)方程组利用加减消元法求解即可.【详解】解:(1),将①代入②得:,解得:,代入①中,解得:,∴方程组的解为:;(2),①+②得:,解得:,代入①中,解得:,∴方程组的解为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.利用数轴解不等式组,并判断3是否是该不等式组的解.答案:1≤x≤4,不是【分析】分别求出每一个不等式的解集,在数轴上表示出不等式的解集,从而得到不等式组的解集,再进一步判断是否在此范围即可.【详解】解:,解不等式①,得:x≥1,解不等式②,得解析:1≤x≤4,不是【分析】分别求出每一个不等式的解集,在数轴上表示出不等式的解集,从而得到不等式组的解集,再进一步判断是否在此范围即可.【详解】解:,解不等式①,得:x≥1,解不等式②,得:x≤4,将不等式的解集表示在数轴上如下:∴不等式组的解集为1≤x≤4,∵>4,∴不是该不等式组的解.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.三、解答题21.如图,在四边形ABCD中,,,延长BA至点E,连接CE,CE交AD于点F,若和的角平分线相交于点P.(1)求证:;(2)若,,求的度数;答案:(1)见解析;(2)【分析】(1)先证明,再证明,从而可得答案;(2)过点P作,交BC于点G,再证明,,再利用平行线的性质可得答案.【详解】解:(1)∵,∴,∵,∴,∴;(2)过解析:(1)见解析;(2)【分析】(1)先证明,再证明,从而可得答案;(2)过点P作,交BC于点G,再证明,,再利用平行线的性质可得答案.【详解】解:(1)∵,∴,∵,∴,∴;(2)过点P作,交BC于点G,∵,∴∵AP平分,∴由(1)知,∴∵CP平分,∴∵,,∴∴,∴【点睛】本题考查的是平行线的判定与性质,平行公理的应用,角平分线的定义,熟练运用以上平行线的性质是解题的关键.22.甲、乙两家工厂生产的办公桌和办公椅的质量、价格一致,每张办公桌800元,每把椅子80元,甲、乙两个厂家推出各自销售的优惠方案:甲厂家,买张桌子送三把椅子:乙厂家,桌子和椅子全部按原价的8折优惠现某公司要购买3张办公桌和若干把椅子,若购买的椅子数为x把().(1)分别用含x的式子表示购买甲、乙两个厂家桌椅所需的金额:购买甲厂家的桌椅所需金额为_;购买乙厂家的桌椅所需金额为_(2)该公司到哪家工厂购买更划算?答案:(1)元,元;(2)若购买的椅子少于15把,则到甲厂划算;若购买的椅子恰好为15把,则到甲、乙两厂的花费一样;若购买的椅子超过15把,则到乙厂划算.【分析】(1)利用总价=单价×数量,结合两厂解析:(1)元,元;(2)若购买的椅子少于15把,则到甲厂划算;若购买的椅子恰好为15把,则到甲、乙两厂的花费一样;若购买的椅子超过15把,则到乙厂划算.【分析】(1)利用总价=单价×数量,结合两厂家的优惠政策,即可用含x的代数式表示出在甲、乙两厂购买所需费用;(2)分三种情况讨论,分别求出x的取值范围即可.【详解】解:(1)购买甲厂家的桌椅所需金额为:(元);购买乙厂家的桌椅所需金额为:(元);故答案为元;元(2)令,解得令,解得令,解得答:当购买的椅子少于15把,则到甲厂划算;若购买的椅子恰好为15把,则到甲、乙两厂的花费一样;若购买的椅子超过15把,则到乙厂划算.【点睛】本题考查了一元一次不等式的应用,分析题干,找到不等关系,列出不等式;注意利用分类讨论思想.23.若不等式(组)①的解集中的任意解都满足不等式(组)②,则称不等式(组)①被不等式(组)②覆盖.特别地,若一个不等式(组)无解,则它被其他任意不等式(组)覆盖.例如:不等式被不等式覆盖;不等式组无解,被其他任意不等式(组)覆盖.(1)下列不等式(组)中,能被不等式覆盖的是______.a.b.c.d.(2)若关于的不等式被覆盖,求的取值范围.(3)若关于的不等式被覆盖,直接写出的取值范围:_____.答案:(1)c,d;(2);(3)或.【分析】(1)根据题意分别解出不等式(组),再判断a,b,c,d是否符合题意;(2)根据题意,列出关于m的不等式,即可求解;(3)分两种情况讨论,①不等式组无解析:(1)c,d;(2);(3)或.【分析】(1)根据题意分别解出不等式(组),再判断a,b,c,d是否符合题意;(2)根据题意,列出关于m的不等式,即可求解;(3)分两种情况讨论,①不等式组无解;②不等式有解,满足题目中的定义,据此列出不等式组,即可求解.【详解】(1)由,解得:,故a不符合题意;由,解得:,故b不符合题意;由,解得:,故c符合题意;由解得:,无解,故d符合题意;故选:c,d;(2)由,解得:,∵关于的不等式被覆盖,∴,即,故填:;(3)①无解,即:,解得:;②有解,即,解得:,且不等式被覆盖,即,解得:,∴;综上所述,或,故填:或.【点睛】本题考查解一元一次不等式(组),解题关键是明确题意,根据题意列出不等式(组).24.(1)如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度数;(2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数;(3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由.答案:(1)∠E=45°;(2)∠E=;(3)不变化,【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠解析:(1)∠E=45°;(2)∠E=;(3)不变化,【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,则可得∠E=(∠D+∠B),继而求得答案;(2)首先延长BC交AD于点F,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D,又由角平分线的性质,即可求得答案.(3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案.【详解】解:(1)∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E,∴∠E=(∠D+∠B),∵∠ADC=50°,∠ABC=40°,∴∠AEC=×(50°+40°)=45°;(2)延长BC交AD于点F,∵∠BFD=∠B+∠BAD,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,∵CE平分∠BCD,AE平分∠BAD∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,∵∠E+∠ECB=∠B+∠EAB,∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD=∠B+∠BAE-(∠B+∠BAD+∠D)=(∠B-∠D),∠ADC=α°,∠ABC=β°,即∠AEC=(3)的值不发生变化,理由如下:如图,记与交于,与交于,①,②,①-②得:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026上半年贵州事业单位联考文化旅游职业学院招聘14人考试参考题库及答案解析
- 2026中国雅江集团社会招聘笔试备考题库及答案解析
- 2026山西离柳焦煤集团有限公司专业技术人员招聘柳林县凌志售电有限公司专业技术人员4人笔试备考题库及答案解析
- 2026年现金流管理优化培训
- 九江富和建设投资集团有限公司2026年第一批招聘工作人员【12人】笔试参考题库及答案解析
- 2026湖北十堰市市属国有企业招聘第一批40人考试参考题库及答案解析
- 2026湖北武汉大学人民医院科研助理招聘7人笔试备考题库及答案解析
- 2026年金融反洗钱合规操作流程
- 2026年排水系统中的流体流动特性
- 2025年四川日报笔试及答案
- GB 4053.3-2025固定式金属梯及平台安全要求第3部分:工业防护栏杆及平台
- 2026中央广播电视总台招聘124人参考笔试题库及答案解析
- JG/T 3030-1995建筑装饰用不锈钢焊接管材
- 流程与TOC改善案例
- 【当代中国婚礼空间设计研究4200字(论文)】
- GB/T 20322-2023石油及天然气工业往复压缩机
- 中国重汽车辆识别代号(VIN)编制规则
- 项目管理学课件戚安邦全
- 羽毛球二级裁判员试卷
- 通风与空调监理实施细则abc
- JJF 1614-2017抗生素效价测定仪校准规范
评论
0/150
提交评论