版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2026届浙南名校联盟数学高一第一学期期末教学质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,,则a、b、c大小关系为()A. B.C. D.2.若函数在上的最大值为4,则的取值范围为()A. B.C. D.3.命题“任意实数”的否定是()A.任意实数 B.存在实数C.任意实数 D.存实数4.直线与函数的图像恰有三个公共点,则实数的取值范围是A. B.C. D.5.函数的最小值为()A. B.C.0 D.6.为了得到函数的图像,只需将函数的图像()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位7.已知函数为定义在上的偶函数,在上单调递减,并且,则实数的取值范围是()A. B.C. D.8.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,则称为高斯函数,例如:,,已知函数,则函数的值域是A. B.C. D.9.若一束光线从点射入,经直线反射到直线上的点,再经直线反射后经过点,则点的坐标为()A. B.C. D.10.方程的解所在的区间是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,现有如下几个命题:①该函数为偶函数;
②是该函数的一个单调递增区间;③该函数的最小正周期为;④该函数的图像关于点对称;⑤该函数的值域为.其中正确命题的编号为______12.已知,则__________.13.计算:______.14.已知定义在上的函数满足:①;②在区间上单调递减;③的图象关于直线对称,则的解析式可以是________15.已知,,试用a、b表示________.16.正三棱锥中,,则二面角的大小为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.求函数的值域18.求值:(1);(2).19.某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:0x5020(1)请将表中数据补充完整,并直接写出函数的解析式;(2)将的图象向右平移3个单位,然后把曲线上各点的横坐标变为原来的倍(纵坐标不变),得到的图象.若关于x的方程在上有解,求实数a的取值范围20.为保护环境,污水进入河流前都要进行净化处理.我市工业园区某工厂的污水先排入净化池,然后加入净化剂进行净化处理.根据实验得出,在一定范围内,每放入1个单位的净化剂,在污水中释放的浓度y(单位:毫克/立方米)随着时间x(单位:小时)变化的函数关系式近似为.若多次加进净化剂,则某一时刻净化剂在污水中释放的浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当净化剂在污水中释放的浓度不低于4(毫克/立方米)时,它才能起到净化污水的作用.(1)若投放1个单位的净化剂4小时后,求净化剂在污水中释放的浓度;(2)若一次投放4个单位的净化剂并起到净化污水的作用,则净化时间约达几小时?(结果精确到0.1,参考数据:,)(3)若第一次投放1个单位的净化剂,3小时后再投放2个单位的净化剂,设第二次投放t小时后污水中净化剂浓度为(毫克/立方米),其中,求的表达式和浓度的最小值.21.已知角的终边与单位圆交于点(1)写出、、值;(2)求的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据对数函数以及指数函数单调性比较大小即可.【详解】则故选:C2、C【解析】先分别探究函数与的单调性,再求的最大值.【详解】因为在上单调递增,在上单调递增.而,,所以的取值范围为.【点睛】本题主要考查分段函数的最值以及指数函数,对数函数的单调性,属于中档题.3、B【解析】根据含全称量词的命题的否定求解.【详解】根据含量词命题的否定,命题“任意实数”的否定是存在实数,故选:B4、C【解析】解方程组,得,或由直线与函数的图像恰有三个公共点,作出图象,结合图象,知∴实数的取值范围是故选C【点睛】本题考查满足条件的实数的取值范围的求法,解题时要认真审题,注意数形结合思想的合理运用5、C【解析】利用对数函数单调性得出函数在时取得最小值【详解】,因为是增函数,因此当时,,,当时,,,而时,,所以时,故选:C6、A【解析】根据函数平移变换的方法,由即,只需向右平移个单位即可.【详解】根据函数平移变换,由变换为,只需将的图象向右平移个单位,即可得到的图像,故选A.【点睛】本题主要考查了三角函数图象的平移变换,解题关键是看自变量上的变化量,属于中档题.7、D【解析】利用函数的奇偶性得到,再解不等式组即得解.【详解】解:由题得.因为在上单调递减,并且,所以,所以或.故选:D8、D【解析】化简函数,根据表示不超过的最大整数,可得结果.【详解】函数,当时,;当时,;当时,,函数的值域是,故选D.【点睛】本题考查指数的运算、函数的值域以及新定义问题,属于难题.新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.9、C【解析】由题可求A关于直线的对称点为及关于直线的对称点为,可得直线的方程,联立直线,即得.【详解】设A关于直线的对称点为,则,解得,即,设关于直线的对称点为,则,解得,即,∴直线的方程为:代入,可得,故.故选:C.10、B【解析】作差构造函数,利用零点存在定理进行求解.【详解】令,则,,因为,所以函数的零点所在的区间是,即方程的解所在的区间是.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、②③【解析】由于为非奇非偶函数,①错误.,此时,其在上为增函数,②正确.由于,所以函数最小正周期为,③正确.由于,故④正确.当时,,故⑤错误.综上所述,正确的编号为②③.12、##【解析】首先根据同角三角函数的基本关系求出,再利用二倍角公式及同角三角函数的基本关系将弦化切,最后代入计算可得;【详解】解:因为,所以,所以故答案为:13、【解析】利用指数幂和对数的运算性质可计算出所求代数式的值.【详解】原式.故答案为:.【点睛】本题考查指数与对数的计算,考查指数幂与对数运算性质的应用,考查计算能力,属于基础题.14、(答案不唯一)【解析】取,结合二次函数的基本性质逐项验证可得结论.【详解】取,则,满足①,在区间上单调递减,满足②,的图象关于直线对称,满足③.故答案为:(答案不唯一).15、【解析】根据对数式指数式互化公式,结合对数换底公式、对数的运算性质进行求解即可.【详解】因为,所以,因此有:,故答案为:16、【解析】取中点为O,连接VO,BO在正三棱锥中,因为,所以,所以=,所以三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】将化为,分和分别应用均值不等式可得答案.【详解】解:,当时,,当且仅当,即时取等号;当时,,当且仅当,即时取等号综上所述,的值域为18、(1);(2)5.【解析】(1)利用指数幂的运算法则计算即得解;(2)利用对数的运算法则化简计算即得解.【详解】(1)原式=;(2)原式=.【点睛】本题主要考查指数对数的运算,意在考查学生对这些知识的理解掌握水平.19、(1)填表见解析;;(2).【解析】(1)利用正弦型函数的性质即得;(2)由题可得,利用正弦函数的性质可得,即得,即求.【小问1详解】0x2580200.【小问2详解】由题可得,∵,∴,∴,∴,所以,∴.20、(1)6毫克/立方米(2)7.1(3),;的最小值为12毫克/立方米【解析】(1)由函数解析式,将代入即可得解;(2)分和两种情况讨论,根据题意列出不等式,从而可得出答案;(3)根据题意写出函数的解析式,再根据基本不等式即可求得最小值.【小问1详解】解:由,当时,,所以若投放1个单位的净化剂4小时后,净化剂在污水中释放的浓度为6毫克/立方米;【小问2详解】解:因为净化剂在污水中释放的浓度不低于4(毫克/立方米)时,它才能起到净化污水的作用,当时,令,得恒成立,所以当时,起到净化污水的作用,当时,令,得,则,所以,综上所述当时,起到净化污水的作用,所以若一次投放4个单位的净化剂并起到净化污水的作用,则净化时间约达7.1小时;【小问3详解】解:因为第一次投入1个单位的净化剂,3小时后再投入2个单位净化剂,要计算的是第二次投放t小时后污水中净化剂浓度为,所以,,因为,所以,当且仅当,即时取等号,所以,,当时,取最小值12毫克/立方米.21、(1)=;=;=(2)【解析】(1)根据已知角的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省南京市鼓楼区2025-2026学年上学期期末语文四年级试卷(无答案)
- 飞科介绍教学课件
- 2026湖南娄底市娄星区青年就业见习单位第二批招募见习人员22人参考考试题库及答案解析
- 2026山东德州市事业单位招聘初级综合类岗位人员参考考试题库及答案解析
- 2026福建厦门工学院面向台湾地区招聘高层次人才参考考试题库及答案解析
- 2026春季梦想靠岸招商银行江门分行校园招聘笔试参考题库及答案解析
- 洗浴中心策划活动方案(3篇)
- 航空总部活动策划方案(3篇)
- 装饰校园活动策划方案(3篇)
- 行政类文件编制管理制度(3篇)
- GB/T 43590.507-2025激光显示器件第5-7部分:激光扫描显示在散斑影响下的图像质量测试方法
- QGDW12505-2025电化学储能电站安全风险评估规范
- 2024年山东济南中考满分作文《为了这份繁华》
- 2025年铁岭卫生职业学院单招职业倾向性测试题库新版
- 2025年常州机电职业技术学院高职单招语文2018-2024历年参考题库频考点含答案解析
- 民间融资居间合同
- 环境污染损害评估报告
- 表面活性剂化学知识点
- 《塑料材质食品相关产品质量安全风险管控清单》
- 武术学校体育器材项目 投标方案(技术方案)
- DL∕T 1057-2023 自动跟踪补偿消弧线圈成套装置技术条件
评论
0/150
提交评论