四川省资阳市高中2025年数学高二上期末预测试题含解析_第1页
四川省资阳市高中2025年数学高二上期末预测试题含解析_第2页
四川省资阳市高中2025年数学高二上期末预测试题含解析_第3页
四川省资阳市高中2025年数学高二上期末预测试题含解析_第4页
四川省资阳市高中2025年数学高二上期末预测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省资阳市高中(2025年数学高二上期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.雅言传承文明,经典浸润人生.某市举办“中华经典诵写讲大赛”,大赛分为四类:“诵读中国”经典诵读大赛、“诗教中国”诗词讲解大赛、“笔墨中国”汉字书写大赛、“印记中国”学生篆刻大赛.某人决定从这四类比赛中任选两类参赛,则“诵读中国”被选中的概率为()A. B.C. D.2.若直线过点(1,2),(4,2+),则此直线的倾斜角是()A.30° B.45°C.60° D.90°3.在中,B=30°,BC=2,AB=,则边AC的长等于()A. B.1C. D.24.如图,在平行六面体中,设,,,用基底表示向量,则()A. B.C. D.5.设,直线,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.已知点F是双曲线的左焦点,点E是该双曲线的右顶点,过F作垂直于x轴的直线与双曲线交于G、H两点,若是锐角三角形,则该双曲线的离心率e的取值范围是()A. B.C. D.7.已知等差数列的前n项和为,,,若(),则n的值为()A.15 B.14C.13 D.128.设,,则“”是“”的A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件9.已知变量x,y具有线性相关关系,它们之间的一组数据如下表所示,若y关于x的线性回归方程为,则m=()x1234y0.11.8m4A.3.1 B.4.3C.1.3 D.2.310.实数m变化时,方程表示的曲线不可以是()A.直线 B.圆C椭圆 D.双曲线11.设为等差数列的前项和,若,,则公差的值为()A. B.2C.3 D.412.年月日我国公布了第七次全国人口普查结果.自新中国成立以来,我国共进行了七次全国人口普查,如图为我国历次全国人口普查人口性别构成及总人口性别比(以女性为,男性对女性的比例)统计图,则下列说法错误的是()A.第五次全国人口普查时,我国总人口数已经突破亿B.第一次全国人口普查时,我国总人口性别比最高C.我国历次全国人口普查总人口数呈递增趋势D.我国历次全国人口普查总人口性别比呈递减趋势二、填空题:本题共4小题,每小题5分,共20分。13.双曲线的离心率为____14.若x,y满足约束条件,则的最小值为___________.15.已知在△中,角A,B,C的对边分别是a,b,c,若△的面积为2,边上中线的长为.且,则△外接圆的面积为___________16.等比数列的各项均为正数,且,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题:“,”,命题:“,”,若“且”为真命题,求实数的取值范围18.(12分)已知函数的图像为曲线,点、.(1)设点为曲线上在第一象限内的任意一点,求线段的长(用表示);(2)设点为曲线上任意一点,求证:为常数;(3)由(2)可知,曲线为双曲线,请研究双曲线的性质(从对称性、顶点、渐近线、离心率四个角度进行研究).19.(12分)已知椭圆C与椭圆有相同的焦点,且离心率为.(1)椭圆C的标准方程;(2)若椭圆C的两个焦点,P是椭圆上的点,且,求的面积.20.(12分)在矩形中,是的中点,是上,,且,如图,将沿折起至:(1)指出二面角的平面角,并说明理由;(2)若,求证:平面平面;(3)若是线段的中点,求证:直线平面;21.(12分)设函数(I)求曲线在点处的切线方程;(II)设,若函数有三个不同零点,求c的取值范围22.(10分)已知椭圆的一个焦点是,且离心率.(1)求椭圆的方程;(2)设过点的直线交于两点,线段的垂直平分线交轴于点,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由已知条件得基本事件总数为种,符合条件的事件数为3中,由古典概型公式直接计算即可.【详解】从四类比赛中选两类参赛,共有种选择,其中“诵读中国”被选中的情况有3种,即“诵读中国”和“诗教中国”,“诵读中国”和“笔墨中国”,“诵读中国”和“印记中国”,由古典概型公式可得,故选:.2、A【解析】求出直线的斜率,由斜率得倾斜角【详解】由题意直线斜率为,所以倾斜角为故选:A3、B【解析】利用余弦定理即得【详解】由余弦定理,得,解得AC=1故选:B.4、B【解析】直接利用空间向量基本定理求解即可【详解】因为在平行六面体中,,,,所以,故选:B5、A【解析】由可求得实数的值,再利用充分条件、必要条件的定义判断可得出结论.【详解】若,则,解得或,因此,“”是“”的充分不必要条件.故选:A.6、B【解析】根据是等腰三角形且为锐角三角形,得到,即,解得离心率范围.【详解】,当时,,,不妨取,,是等腰三角形且为锐角三角形,则,即,,即,,解得,故.故选:B.7、B【解析】由已知条件列方程组求出,再由列方程求n的值【详解】设等差数列的公差为,则由,,得,解得,因为,所以,即,解得或(舍去),故选:B8、C【解析】不能推出,反过来,若则成立,故为必要不充分条件.9、A【解析】先求得样本中心,代入回归方程,即可得答案.【详解】由题意得,又样本中心在回归方程上,所以,解得.故选:A10、B【解析】根据的取值分类讨论说明【详解】时方程化为,为直线,时,方程化为,为椭圆,时,方程化为,为双曲线,而,因此曲线不可能是圆故选:B11、C【解析】根据等差数列前项和公式进行求解即可.【详解】,故选:C12、D【解析】根据统计图判断各选项的对错.【详解】由统计图第五次全国人口普查时,男性和女性人口数都超过6亿,故总人口数超过12亿,A对,由统计图,第一次全国人口普查时,我国总人口性别比为107.56,超过余下几次普查的人口的性别比,B对,由统计图可知,我国历次全国人口普查总人口数呈递增趋势,C对,由统计图可知,第二次,第三次,第四次,第五次时总人口性别比呈递增趋势,D错,D错,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意得:考点:双曲线离心率14、##【解析】作出可行域,进而根据z的几何意义求得答案.【详解】如图,作出可行域,由z的几何意义可知当过点B时取得最小值.联立,则最小值为.故答案为:.15、或【解析】由已知,结合正弦定理边角关系及三角形内角的性质可得,再根据三角形面积公式、余弦定理列方程求边长b、c,应用余弦定理求边长a,根据正弦定理求外接圆半径,再用圆的面积公式求面积.【详解】由题设及正弦定理边角关系有,又,∴,∴,∴.又,∴,即又据题意,得,且,∴或,故或,∴△外接圆的半径或,∴△外接圆的面积为或故答案为:或16、10【解析】由等比数列的性质可得,再利用对数的性质可得结果【详解】解:因为等比数列的各项均为正数,且,所以,所以故答案为:10三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、或【解析】先分别求出,为真时,的范围;再求交集,即可得出结果.【详解】若是真命题.则对任意恒成立,∴;若为真命题,则方程有实根,∴,解得或,由题意,真也真,∴或即实数的取值范围是或.18、(1);(2)具体见解析;(3)具体见解析.【解析】(1)由两点间的距离公式求出距离,进而将式子化简即可;(2)求出,进而讨论两种情况,然后结合基本不等式即可证明问题;(3)根据为双曲线的焦点,结合双曲线的图形特征即可求得该双曲线的相关性质.【小问1详解】由题意,.【小问2详解】设,由(1),.若x>0,则,当且仅当时取“=”,则,,所以.若x<0,则,当且仅当时取“=”,则,,所以.综上:,为常数.【小问3详解】易知函数:为奇函数,则其图象关于原点对称.由(2)可知,曲线为双曲线,为双曲线的焦点,则它关于直线对称,还关于与垂直且过原点的直线对称.,则,易得.综上:双曲线关于原点(0,0)对称,且关于直线对称.容易知道,直线是双曲线C的渐近线.易知线段是双曲线的实轴,将代入双曲线解得顶点:.于是实轴长为焦距为,则离心率.19、(1)(2)【解析】(1)由题意求出即可求解;(2)由椭圆的定义和三角形面积公式求解即可【小问1详解】因为椭圆C与椭圆有相同的焦点,所以椭圆C的焦点,,,又,所以,,所以椭圆C的标准方程为.【小问2详解】由,,得,,而,所以,所以20、(1)为二面角的平面角,理由见解析(2)证明见解析(3)证明见解析【解析】(1)根据,结合二面角定义得到答案.(2)证明平面得到,得到平面,得到证明.(3)延长,交于点,连接,证明即可.【小问1详解】连接,则,,故为二面角的平面角.【小问2详解】,,,故平面,平面,故,又,,故平面,平面,故平面平面.【小问3详解】延长,交于点,连接,易知,故故是的中点,是线段的中点,故,平面,且平面,故直线平面.21、(1)(2)【解析】(1)由导数几何意义得切线斜率为,再根据点斜式写切线方程;(2)由函数图像可知,极大值大于零且极小值小于零,解不等式可得c的取值范围试题解析:解:(I)由,得因为,,所以曲线在点处的切线方程为(II)当时,,所以令,得,解得或与在区间上的情况如下:所以,当且时,存在,,,使得由的单调性知,当且仅当时,函数有三个不同零点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论