版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省临汾市侯马市502学校2025年数学高一第一学期期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知幂函数的图像过点,若,则实数的值为A. B.C. D.2.对于任意的实数,定义表示不超过的最大整数,例如,,,那么“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.函数是A.周期为的奇函数 B.周期为的奇函数C.周期为的偶函数 D.周期为的偶函数4.设,,,则、、的大小关系是A. B.C. D.5.已知集合,
,则(
)A. B.C. D.6.如图,四边形ABCD是平行四边形,则12A.AB B.CDC.CB D.AD7.我国在2020年9月22日在联合国大会提出,二氧化碳排放力争于2030年前实现碳达峰,争取在2060年前实现碳中和.为了响应党和国家的号召,某企业在国家科研部门的支持下,进行技术攻关:把二氧化碳转化为一种可利用的化工产品,经测算,该技术处理总成本y(单位:万元)与处理量x(单位:吨)之间的函数关系可近似表示为,当处理量x等于多少吨时,每吨的平均处理成本最少()A.120 B.200C.240 D.4008.已知是偶函数,且在上是减函数,又,则的解集为()A. B.C. D.9.已知函数为偶函数,则A.2 B.C. D.10.已知函数(为自然对数的底数),若对任意,不等式都成立,则实数的取值范围是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若,则________.12.若函数y=f(x)是函数y=2x的反函数,则f(2)=______.13.函数y=1-sin2x-2sinx的值域是______14.若存在常数和,使得函数和对其公共定义域上的任意实数都满足:和恒成立,则称此直线为和的“隔离直线”.已知函数,,若函数和之间存在隔离直线,则实数的取值范围是______15.已知扇形弧长为20cm,圆心角为,则该扇形的面积为___________.16.设三棱锥的三条侧棱两两垂直,且,则三棱锥的体积是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.近年来,国家大力推动职业教育发展,职业教育体系不断完善,人才培养专业结构更加符合市场需求.一批职业培训学校以市场为主导,积极参与职业教育的改革和创新.某职业培训学校共开设了六个专业,根据前若干年的统计数据,学校统计了各专业每年的就业率(直接就业的学生人数与招生人数的比值)和每年各专业的招生人数,具体统计数据如下表:专业机电维修车内美容衣物翻新美容美发泛艺术类电脑技术招生人数就业率(1)从该校已毕业的学生中随机抽取人,求该生是“衣物翻新”专业且直接就业的概率;(2)为适应市场对人才需求的变化,该校决定从明年起,将“电脑技术”专业的招生人数减少人,将“机电维修”专业的招生人数增加人,假设“电脑技术”专业的直接就业人数不变,“机电维修”专业的就业率不变,其他专业的招生人数和就业率都不变,要使招生人数调整后全校整体的就业率比往年提高个百分点,求的值18.已知函数(1)求函数的最小正周期;(2)求函数在上的最大值和最小值,并求函数取得最大值和最小值时的自变量的值19.某校食堂需定期购买大米已知该食堂每天需用大米吨,每吨大米的价格为6000元,大米的保管费用单位:元与购买天数单位:天的关系为,每次购买大米需支付其他固定费用900元该食堂多少天购买一次大米,才能使平均每天所支付的总费用最少?若提供粮食的公司规定:当一次性购买大米不少于21吨时,其价格可享受8折优惠即原价的,该食堂是否应考虑接受此优惠条件?请说明理由20.已知向量,,且.(1)的值;(2)若,,且,求的值21.已知函数(1)求函数的单调递增区间;(2)若,求函数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】将点代入函数解析式,求出参数值,令函数值等于3,可求出自变量的值.详解】依题意有2=4a,得a=,所以,当时,m=9.【点睛】本题考查函数解析式以及由函数值求自变量,一般由函数值求自变量的值时要注意自变量取值范围以及题干的要求,避免多解.2、B【解析】根据充分必要性分别判断即可.【详解】若,则可设,则,,其中,,,即“”能推出“”;反之,若,,满足,但,,即“”推不出“”,所以“”是“”必要不充分条件,故选:B.3、A【解析】对于函数y=sin,T=4π,且sin(-)=-sin.故选A4、B【解析】详解】,,,故选B点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小5、D【解析】因,,故,应选答案D6、D【解析】由线性运算的加法法则即可求解.【详解】如图,设AC,BD交于点O,则12故选:D7、D【解析】先根据题意求出每吨的平均处理成本与处理量之间的函数关系,然后分和分析讨论求出其最小值即可【详解】由题意得二氧化碳每吨的平均处理成本为,当时,,当时,取得最小值240,当时,,当且仅当,即时取等号,此时取得最小值200,综上,当每月得理量为400吨时,每吨的平均处理成本最低为200元,故选:D8、B【解析】根据题意推得函数在上是增函数,结合,确定函数值的正负情况,进而求得答案.【详解】是偶函数,且在上是减函数,又,则,且在上是增函数,故时,,时,,故的解集是,故选:B.9、A【解析】由偶函数的定义,求得的解析式,再由对数的恒等式,可得所求,得到答案【详解】由题意,函数为偶函数,可得时,,,则,,可得,故选A【点睛】本题主要考查了分段函数的运用,函数的奇偶性的运用,其中解答中熟练应用对数的运算性质,正确求解集合A,再根据集合的运算是解答的关键,着重考查了推理与运算能力,属于基础题.10、C【解析】由题意结合函数的单调性和函数的奇偶性求解不等式即可.【详解】由函数的解析式可知函数为定义在R上的增函数,且函数为奇函数,故不等式即,据此有,即恒成立;当时满足题意,否则应有:,解得:,综上可得,实数的取值范围是.本题选择C选项.【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为解不等式(组)的问题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用三角函数的诱导公式,化简得到原式,代入即可求解.【详解】因为,由故答案为:12、1【解析】根据反函数的定义即可求解.【详解】由题知y=f(x)=,∴f(2)=1.故答案为:1.13、[-2,2]【解析】利用正弦函数的值域,二次函数的性质,求得函数f(x)的值域,属于基础题【详解】∵sinx∈[-1,1],∴函数y=1-sin2x-2sinx=-(sinx+1)2+2,故当sinx=1时,函数f(x)取得最小值为-4+2=-2,当sinx=-1时,函数f(x)取得最大值为2,故函数的值域为[-2,2],故答案为[-2,2]【点睛】本题主要考查正弦函数的值域,二次函数的性质,属于基础题14、【解析】由已知可得、恒成立,可求得实数的取值范围.【详解】因为函数和之间存在隔离直线,所以,当时,可得对任意的恒成立,则,即,当时,可得对恒成立,令,则有对恒成立,所以或,解得或,综上所述,实数的取值范围是.故答案为:.15、【解析】求出扇形的半径后,利用扇形的面积公式可求得结果.【详解】由已知得弧长,,所以该扇形半径,所以该扇形的面积.故答案为:16、【解析】根据锥体的体积公式,找到并求出三棱锥的高及底面面积即可求解.【详解】由题意可知该三棱锥为棱长为2的正方体的一个角,如图所示:所以故答案为:【点睛】本题考查锥体体积公式的应用,考查运算求解能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)0.08(2)120【解析】理解题意,根据数据列式求解【小问1详解】由题意,该校往年每年的招生人数为,“衣物翻新”专业直接就业的学生人数为,所以所求的概率为【小问2详解】由表格中的数据,可得往年各专业直接就业的人数分别为,,,,,,往年全校整体的就业率为,招生人数调整后全校整体的就业率为,解得18、(1);(2)【解析】【试题分析】(1)先运用三角变换公式化简,再用周期公式求解;(2)借助所给定义域内的变量的取值范围结合三角函数的图象探求..(1).(2).点睛:本题旨在考查二倍角正弦、余弦公式、两角和差的正弦公式以及正弦函数的图象和性质等有关知识的综合运用.第一问时,先借助二倍角的正弦、余弦公式及两角和的正弦公式将其化简,再运用周期公式求解;解答第二问时,则借助题设中提供的定义域进行分析推证,最后借助正弦函数的图象求出其最大值和最小值.19、(1)10天购买一次大米;(2)见解析.【解析】根据条件建立函数关系,结合基本不等式的应用求最值即可;求出优惠之后的函数表达式,结合函数的单调性求出函数的最值进行判断即可【详解】解:设每天所支付的总费用为元,则,当且仅当,即时取等号,则该食堂10天购买一次大米,才能使平均每天所支付的总费用最少若该食堂接受此优惠条件,则至少每35天购买一次大米,设该食堂接受此优惠条件后,每x,天购买一次大米,平均每天支付的总费用为,则,设,,则在时,为增函数,则当时,有最小值,约为,此时,则食堂应考虑接受此优惠条件【点睛】本题主要考查函数的应用问题,基本不等式的性质以及函数的单调性,属于中档题.20、(1);(2)【解析】(1)首先应用向量数量积坐标公式求得,结合,求得,得到结果;(2)结合题的条件,利用同角三角函数关系式求得,结合角的范围以及(1)的结论,求得,再应用余弦和角公式求得的值,结合角的范围求得,得到结果.【详解】(1)因为,,所以因为,所以,即.(2)因为,,所以.因为,,所以.因为,所以,所以.因为,,所以,所以.【点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 神经内科2025年12月份三基考试试题及答案
- 工业园区管委会笔试试题
- 《浩瀚的宇宙》教案物理科课件
- 酒店客房设备采购与供应商管理制度
- 酒店客源市场分析制度
- 车间精细化管理培训课件
- 银行征信业务管理规范制度
- 2026年度村卫生室工作总结(2篇)
- 车间安全锁培训课件
- 车间安全培训的重要性
- (2024年)幼师必备幼儿园安全教育PPT《交通安全》
- 缩水机安全操作规程
- 颅内压波形分析
- 中国消化内镜内痔诊疗指南及操作共识(2023年)
- 2023年高校教师资格证之高等教育学真题及答案
- dosm新人落地训练全流程课程第五步三次面谈
- JJF 1798-2020隔声测量室校准规范
- GB/T 29516-2013锰矿石水分含量测定
- 石湖矿综采放顶煤可行性技术论证1
- DB11 1505-2022 城市综合管廊工程设计规范
- 佛山市顺德区飞鹅永久墓园管理处招考2名管理员工(全考点)模拟卷
评论
0/150
提交评论