云南省鲁甸县第二中学2025年高一上数学期末学业水平测试试题含解析_第1页
云南省鲁甸县第二中学2025年高一上数学期末学业水平测试试题含解析_第2页
云南省鲁甸县第二中学2025年高一上数学期末学业水平测试试题含解析_第3页
云南省鲁甸县第二中学2025年高一上数学期末学业水平测试试题含解析_第4页
云南省鲁甸县第二中学2025年高一上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省鲁甸县第二中学2025年高一上数学期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=ax(a>0,a≠1)对于任意的实数xA.f(xy)=f(x)f(y) B.f(x+y)=f(x)f(y)C.f(xy)=f(x)+f(y) D.f(x+y)=f(x)+f(y)2.已知函数,若正数,,满足,则()A.B.C.D.3.函数的图象大致形状为()A. B.C. D.4.化简:A.1 B.C. D.25.函数的部分图像如图所示,则该函数的解析式为()A. B.C. D.6.已知,则的大小关系为()A B.C. D.7.已知向量和的夹角为,且,则A. B.C. D.8.函数的零点位于区间()A. B.C. D.9.已知角终边上A点的坐标为,则()A.330 B.300C.120 D.6010.命题“”的否定为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.命题“,使”是真命题,则的取值范围是________12.若,则的定义域为____________.13.已知集合,则集合的子集个数为___________.14.计算:______.15.函数,函数有______个零点,若函数有三个不同的零点,则实数的取值范围是______.16.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在区间上的奇函数,且.(1)求函数的解析式;(2)判断函数在区间上的单调性,并用函数单调性的定义证明.18.已知集合,(1)若,,求;(2)集合A,B能否相等?若能,求出a,b的值;若不能,请说明理由.19.如图,在几何体ABCDEF中,平面平面ABFE.正方形ABFE的边长为2,在矩形ABCD中,(1)证明:;(2)求点B到平面ACF的距离20.计算:(1);(2)若,求的值21.已知函数(1)求函数的最小正周期和在上的值域;(2)若,求的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】由指数的运算性质得到ax+y【详解】解:由函数f(x)=a得f(x+y)=a所以函数f(x)=ax(a>0,a≠1)对于任意的实数x、y故选:B.【点睛】本题考查了指数的运算性质,是基础题.2、B【解析】首先判断函数在上单调递增;然后根据,同时结合函数的单调性及放缩法即可证明选项B;通过举例说明可判断选项A,C,D.【详解】因为,所以函数在上单调递增;因为,,,均为正数,所以,又,所以,所以,所以,又因为,所以,选项B正确;当时,满足,但不满足,故选项A错误;当时,满足,但此时,不满足,故选项C错误;当时,满足,但此时,不满足,故选项D错误.故选:B.3、A【解析】首先判断函数的奇偶性,再利用上的函数值的正负即可判断;【详解】解:因为,定义域为,且所以为偶函数,函数图象关于轴对称,故排除、;又当时,,,所以,则,所以,所以,即可排除C;故选:A4、C【解析】根据二倍角公式以及两角差的余弦公式进行化简即可.【详解】原式.故选C.【点睛】这个题目考查了二倍角公式的应用,涉及两角差的余弦公式以及特殊角的三角函数值的应用属于基础题.5、A【解析】由图象确定以及周期,进而得出,再由得出的值.【详解】显然因为,所以,所以由得所以,即,因为,所以所以.故选:A【点睛】本题主要考查了由函数图象确定正弦型函数的解析式,属于中档题.6、B【解析】观察题中,不妨先构造函数比较大小,再利用中间量“1”比较与大小即可得出答案.【详解】由题意得,,由函数在上是增函数可得,由对数性质可知,,所以,故选:B7、D【解析】根据数量积的运算律直接展开,将向量的夹角与模代入数据,得到结果【详解】=8+3-18=8+3×2×3×-18=-1,故选D.【点睛】本题考查数量积的运算,属于基础题8、C【解析】先研究的单调性,利用零点存在定理即可得到答案.【详解】定义域为.因为和在上单增,所以在上单增.当时,;;而;,由零点存在定理可得:函数的零点位于区间.故选:C9、A【解析】根据特殊角的三角函数值求出点的坐标,再根据任意角三角函数的定义求出的值.【详解】,,即,该点在第四象限,由,,得.故选:A.10、D【解析】根据命题的否定的定义写出结论,注意存在量词与全称量词的互换【详解】命题“”的否定为“”故选D【点睛】本题考查命题的否定,解题时一定注意存在量词与全称量词的互换二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】可根据题意得出“,恒成立”,然后根据即可得出结果.【详解】因为命题“,使”是真命题,所以,恒成立,即恒成立,因为当时,,所以,的取值范围是,故答案为:.12、【解析】使表达式有意义,解不等式组即可.【详解】由题,解得,即,故答案为:.【点晴】此题考函数定义域的求法,属于简单题.13、2【解析】先求出然后直接写出子集即可.【详解】,,所以集合的子集有,.子集个数有2个.故答案为:2.14、【解析】利用指数幂和对数的运算性质可计算出所求代数式的值.【详解】原式.故答案为:.【点睛】本题考查指数与对数的计算,考查指数幂与对数运算性质的应用,考查计算能力,属于基础题.15、①.1②.【解析】(1)画出图像分析函数的零点个数(2)条件转换为有三个不同的交点求实数的取值范围问题,数形结合求解即可.【详解】(1)由题,当时,,当时,为二次函数,对称轴为,且过开口向下.故画出图像有故函数有1个零点.又有三个不同的交点则有图像有最大值为.故.故答案为:(1).1(2).【点睛】本题主要考查了数形结合求解函数零点个数与根据零点个数求参数范围的问题,属于中档题.16、①②④【解析】①取BD的中点O,连接OA,OC,所以,所以平面OAC,所以AC⊥BD;②设正方形的边长为a,则在直角三角形ACO中,可以求得OC=a,所以△ACD是等边三角形;③AB与平面BCD成45角;④分别取BC,AC的中点为M,N,连接ME,NE,MN.则MN∥AB,且MN=AB=a,ME∥CD,且ME=CD=a,∴∠EMN是异面直线AB,CD所成的角.在Rt△AEC中,AE=CE=a,AC=a,∴NE=AC=a.∴△MEN是正三角形,∴∠EMN=60°,故④正确考点:本小题主要考查平面图形向空间图形的折叠问题,考查学生的空间想象能力.点评:解决此类折叠问题,关键是搞清楚折叠前后的变量和不变的量.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)增函数,证明见解析【解析】(1)又函数为奇函数可得,结合求得,即可得出答案;(2)令,利用作差法判断的大小,即可得出结论.【小问1详解】解:因为函数是定义在区间上的奇函数,所以,即,所以,又,所以,所以;【小问2详解】解:增函数,证明如下:令,则,因为,所以,,所以,即,所以函数在区间上递增.18、(1),或;(2)能,,【解析】(1)代入数据,根据集合的交集和补集运算法则即可求出结论;(2)根据集合相等的概念即可求出答案.详解】解:(1)当,时,,∵,或,∴,或;(2)∵,若,则可变成,∵,则,解得;若,则可变成,而,不可能;综上:,19、(1)证明见解析;(2)【解析】(1)连接BE,证明AF⊥平面BEC即可;(2)由等体积即可求点B到平面ACF的距离【小问1详解】连接BE,平面平面,且平面平面,又在矩形中,有,平面,平面,,在正方形中有,且,平面平面,平面,;【小问2详解】设点到平面的距离为,由已知有,,由(1)知:平面,平面,,从而可得:,,在等腰中,底边上的高为:,,由得,,则,即点到平面的距离为20、(1)(2)【解析】(1)根据分数指数幂、对数的运算法则及换底公式计算可得;(2)根据换底公式的性质得到,再根据指数对数恒等式得到,即可得解;【小问1详解】解:【小问2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论