陕西省西乡二中2026届数学高一上期末考试试题含解析_第1页
陕西省西乡二中2026届数学高一上期末考试试题含解析_第2页
陕西省西乡二中2026届数学高一上期末考试试题含解析_第3页
陕西省西乡二中2026届数学高一上期末考试试题含解析_第4页
陕西省西乡二中2026届数学高一上期末考试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西乡二中2026届数学高一上期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知全集,集合,则()A. B.C. D.2.在中,若,则的形状为()A.等边三角形 B.直角三角形C.钝角三角形 D.不含角的等腰三角形3.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:血液中酒精含量达到的驾驶员即为酒后驾车,及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中酒精含量上升到.如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少要经过()小时才能驾驶.(参考数据:,)A.1 B.3C.5 D.74.甲、乙两位同学解答一道题:“已知,,求的值.”甲同学解答过程如下:解:由,得.因为,所以.所以.乙同学解答过程如下:解:因为,所以.则在上述两种解答过程中()A.甲同学解答正确,乙同学解答不正确 B.乙同学解答正确,甲同学解答不正确C.甲、乙两同学解答都正确 D.甲、乙两同学解答都不正确5.下列函数中,最小正周期为π2A.y=cosxC.y=cos2x6.在①;②;③;④上述四个关系中,错误的个数是()A.1个 B.2个C.3个 D.4个7.函数f(x)=|x-2|-lnx在定义域内零点的个数为()A.0 B.1C.2 D.38.已知,且,则下列不等式一定成立的是()A. B.C. D.9.一个几何体的三视图如图所示,则该几何体的表面积为A. B.C. D.10.某几何体的三视图如图所示,其中俯视图中圆的直径为4,该几何体的表面积为A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设常数使方程在闭区间上恰有三个不同的解,则实数的取值集合为________,_______12.已知幂函数的图象经过点,且满足条件,则实数的取值范围是___13.已知,且,写出一个满足条件的的值:______.14.为了实现绿色发展,避免用电浪费,某城市对居民生活用电实行“阶梯电价”.计费方法如表所示,若某户居民某月交纳电费227元,则该月用电量为_______度.每户每月用电量电价不超过210度的部分0.5元/度超过210度但不超过400度的部分0.6元/度超过400度的部分0.8元/度15.如图,在平面直角坐标系中,圆,点,点是圆上的动点,线段的垂直平分线交线段于点,设分别为点的横坐标,定义函数,给出下列结论:①;②是偶函数;③在定义域上是增函数;④图象的两个端点关于圆心对称;⑤动点到两定点的距离和是定值.其中正确的是__________16.设当时,函数取得最大值,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数其中.(1)当a=0时,求f(x)的值域;(2)若f(x)有两个零点,求a的取值范围.18.已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数.(1)已知,,利用上述性质,求函数的单调区间和值域;(2)对于(1)中的函数和函数,若对任意,总存在,使得成立,求实数a的值.19.已知函数.(1)求的定义域;(2)若角在第一象限且,求的值.20.已知函数(且).(1)当时,,求的取值范围;(2)若在上最小值大于1,求的取值范围.21.在三棱锥中,和是边长为的等边三角形,,分别是的中点.(1)求证:平面;(2)求证:平面;(3)求三棱锥的体积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】首先确定全集,而后由补集定义可得结果【详解】解:,又,.故选B【点睛】本题考查了集合的补集,熟练掌握补集的定义是解决本题的关键,属于基础题型.2、B【解析】利用三角形的内角和,结合差角的余弦公式,和角的正弦公式,即可得出结论【详解】解:由题意可得sin(A﹣B)=1+2cos(B+C)sin(A+C),∴sin(A﹣B)=1﹣2cosAsinB,∴sinAcosB﹣cosAsinB=1﹣2cosAsinB,∴sinAcosB+cosAsinB=1,∴sin(A+B)=1,∴A+B=90°,∴△ABC是直角三角形故选:B【点睛】本题考查差角的余弦公式,和角的正弦公式,考查学生的计算能力,属于基础题3、C【解析】设经过个小时才能驾驶,则,再根据指数函数的性质及对数的运算计算可得.详解】设经过个小时才能驾驶,则,即由于在定义域上单调递减,∴∴他至少经过5小时才能驾驶.故选:C4、D【解析】分别利用甲乙两位同学的解题方法解题,从而可得出答案.【详解】解:对于甲同学,由,得,因为因为,所以,所以,故甲同学解答过程错误;对于乙同学,因为,所以,故乙同学解答过程错误.故选:D.5、D【解析】利用三角函数的周期性求解.【详解】A.y=cosx周期为T=2πB.y=tanx的周期为C.y=cos2x的周期为D.y=tan2x的周期为故选:D6、B【解析】根据元素与集合的关系,集合与集合的关系以及表示符号,及规定空集是任何非空集合的真子集,即可找出错误的个数【详解】解:“”表示集合与集合间的关系,所以①错误;集合中元素是数,不是集合元素,所以②错误;根据子集的定义,{0,1,2}是自身的子集,空集是任何非空集合的真子集,所以③④正确;所表示的关系中,错误的个数是2故选:B7、C【解析】分别画出函数y=lnx(x>0)和y=|x-2|(x>0)的图像,可得2个交点,故f(x)在定义域中零点个数为2.8、D【解析】对A,B,C,利用特殊值即可判断,对D,利用不等式的性质即可判断.【详解】解:对A,令,,此时满足,但,故A错;对B,令,,此时满足,但,故B错;对C,若,,则,故C错;对D,,则,故D正确.故选:D.9、D【解析】该几何体为半圆柱,底面为半径为1的半圆,高为2,因此表面积为,选D.10、D【解析】由三视图知几何体为圆柱挖去一个圆锥所得的组合体,且圆锥与圆柱的底面直径都为4,高为2,则圆锥的母线长为,∴该几何体的表面积S=π×22+2π×2×2+π×2×2=(12+4)π,故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、①.②.【解析】利用辅助角公式可将问题转化为在上直线与三角函数图象的恰有三个交点,利用数形结合可确定的取值;由的取值可求得的取值集合,从而确定的值,进而得到结果.【详解】,方程的解即为在上直线与三角函数图象的交点,由图象可知:当且仅当时,直线与三角函数图象恰有三个交点,即实数的取值集合为;,或,即或,此时,,,.故答案为:;.【点睛】思路点睛:本题考查与三角函数有关的方程根的个数问题,解决方程根的个数的基本思路是将问题转化为两函数交点个数问题,从而利用数形结合的方式来进行求解.12、【解析】首先求得函数的解析式,然后求解实数的取值范围即可.【详解】设幂函数的解析式为,由题意可得:,即幂函数的解析式为:,则即:,据此有:,求解不等式组可得实数的取值范围是.【点睛】本题主要考查幂函数的定义及其应用,属于基础题.13、0(答案不唯一)【解析】利用特殊角的三角函数值求解的值.【详解】因为,所以,,则,或,,同时满足即可.故答案为:014、410【解析】由题意列出电费(元)关于用电量(度)的函数,令,代入运算即可得解.【详解】由题意,电费(元)关于用电量(度)的函数为:,即,当时,,若,,则,解得.故答案为:410.15、③④⑤【解析】对于①,当即轴,线段的垂直平分线交线段于点,显然不在BD上,所以所以①不对;对于②,由于,不关于原点对称,所以不可能是偶函数,所以①不对;对于③,由图形知,点D向右移动,点F也向右移动,在定义域上是增函数,正确;对于④,由图形知,当D移动到圆A与x轴的左右交点时,分别得到函数图象的左端点(−7,−3),右端点(5,3),故f(n)图象的两个端点关于圆心A(-1,0)对称,正确;对于⑤,由垂直平分线性质可知,所以,正确.故答案为③④⑤.16、【解析】利用辅助角公式化简函数解析式,再根据最值情况可得解.【详解】由辅助角公式可知,,,,当,时取最大值,即,,故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】(1)分别求出和的值域即可;(2)分两种情况讨论,若,有1个零点,时,有1个零点;若,无零点,时,有2个零点.【详解】(1)当时,,则当时,,当时,单调递增,则,综上,的值域为;(2)当时,,当时,单调递增,若,有1个零点,则,则时,也应有1个零点,所以,又,则;若,无零点,则,则时,有2个零点,所以;综上,a的取值范围为.18、(1)减区间为,增区间为;;(2).【解析】(1)设,,,则,,根据函数的性质,可得单调性,根据单调性可得值域;(2)根据单调性求出函数在上的值域,再根据的值域是的值域的子集列式可解得结果.【详解】(1),设,,,则,,由已知性质得,当,即时,单调递减,所以减区间为;当,即时,单调递增,所以增区间为;由,,,得的值域为;(2)因为为减函数,故函数在上的值域为.由题意,得的值域是的值域的子集,所以,所以.【点睛】本题考查了对勾函数的单调性,考查了利用函数的单调性求值域,考查了转化化归思想,属于中档题.19、(1);(2).【解析】(1)根据分母不为零,结合诱导公式和余弦函数的性进行求解即可;(2)根据同角的三角函数关系式,结合二倍角公式、两角差的余弦公式进行求解即可.【详解】(1)由,得,;故的定义域为(2)因为角在第一象限且,所以;从而====.20、(1).(2).【解析】(1)当时,得到函数的解析式,把不等式,转化为,即可求解;(2)由在定义域内单调递减,分类讨论,即可求解函数的最大值,得到答案.【详解】(1)当时,,,得.(2)在定义域内单调递减,当时,函数在上单调递减,,得.当时,函数在上单调递增,,不成立.综上:.【点睛】本题主要考查了指数函数的图象与性质的应用问题,其中解答中由指数函数的解析式转化为相应的不等式,以及根据指数函数的单调性分类讨论求解是解答的关键,着重考查了推理与运算能力.21、(1)证明见解析;(2)证明见解析;(3).【解析】(1)欲证线面平行,则需证直线与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论