版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市长安区一中2025年数学高二上期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若定义在R上的函数满足,则不等式的解集为()A. B.C. D.2.瑞士数学家欧拉(LeonhardEuler)1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上.后人称这条直线为欧拉线.已知△ABC的顶点,其欧拉线方程为,则顶点C的坐标是()A.() B.()C.() D.()3.若,,则下列各式中正确的是()A. B.C. D.4.已知F1(-5,0),F2(5,0),动点P满足|PF1|-|PF2|=2a,当a为3和5时,点P的轨迹分别为()A.双曲线和一条直线 B.双曲线和一条射线C.双曲线的一支和一条直线 D.双曲线的一支和一条射线5.已知点为直线上任意一点,为坐标原点.则以为直径的圆除过定点外还过定点()A. B.C. D.6.设是两个不同的平面,是一条直线,以下命题正确的是A.若,则 B.若,则C.若,则 D.若,则7.已知,则下列不等式一定成立的是()A. B.C. D.8.若,,,则a,b,c与1的大小关系是()A. B.C. D.9.直线与圆的位置关系是()A.相交 B.相切C.相离 D.相交或相切10.古希腊数学家阿波罗尼奥斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,著作中有这样一个命题:平面内与两定点距离的比为常数k(k>0且k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.已知O(0,0),A(3,0),动点P(x,y)满,则动点P轨迹与圆的位置关系是()A.相交 B.相离C.内切 D.外切11.随机抽取甲乙两位同学连续9次成绩(单位:分),得到如图所示的成绩茎叶图,关于这9次成绩,则下列说法正确的是()A.甲成绩的中位数为33 B.乙成绩的极差为40C.甲乙两人成绩的众数相等 D.甲成绩的平均数低于乙成绩的平均数12.音乐与数学有着密切的联系,我国春秋时期有个著名的“三分损益法”:以“宫”为基本音,“宫”经过一次“损”,频率变为原来的,得到“微”,“微”经过一次“益”,频率变为原来的,得到“商”……依此规律损益交替变化,获得了“宫”“微”“商”“羽”“角”五个音阶.据此可推得()A.“商”“羽”“角”的频率成公比为的等比数列B.“宫”“微”“商”的频率成公比为的等比数列C.“宫”“商”“角”的频率成公比为的等比数列D.“角”“商”“宫”的频率成公比为的等比数列二、填空题:本题共4小题,每小题5分,共20分。13.设集合,把集合中的元素按从小到大依次排列,构成数列,求数列的前项和___14.已知集合,集合,则__________.15.若双曲线的离心率为2,则此双曲线的渐近线方程___________.16.两姐妹同时推销某一商品,现抽取他们其中8天的销售量(单位:台),得到的茎叶图如图所示,已知妹妹的销售量的平均数为14,姐姐的销售量的中位数比妹妹的销售量的众数大2,则的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,焦点,A,B是上关于原点对称的两点,的周长的最小值为(1)求的方程;(2)直线FA与交于点M(异于点A),直线FB与交于点N(异于点B),证明:直线MN过定点18.(12分)某高中招聘教师,首先要对应聘者的简历进行筛选,简历达标者进入面试,面试环节应聘者要回答3道题,第一题为教育心理学知识,答对得4分,答错得0分,后两题为学科专业知识,每道题答对得3分,答错得0分(1)甲、乙、丙、丁、戊来应聘,他们中仅有3人的简历达标,若从这5人中随机抽取3人,求这3人中恰有2人简历达标的概率;(2)某进入面试的应聘者第一题答对的概率为,后两题答对的概率均为,每道题答对与否互不影响,求该应聘者的面试成绩X的分布列及数学期望19.(12分)已知椭圆C:的长轴长为4,过C的一个焦点且与x轴垂直的直线被C截得的线段长为3(1)求C的方程;(2)若直线:与C交于A,B两点,线段AB的中垂线与C交于P,Q两点,且,求m的值20.(12分)阅读本题后面有待完善的问题,在下列三个条件:①,②,③中选择一个作为条件,补充在题中横线处,使问题完善,并解答你构造的问题.(如果选择多个关系并分别解答,在不出现逻辑混乱的情况下,按照第一个解答给分).问题:已知命题,,命题___________,若是的充分不必要条件,求实数的取值范围.21.(12分)在直角坐标系中,以坐标原点O为圆心的圆与直线相切.(1)求圆O的方程;(2)设圆O交x轴于A,B两点,点P在圆O内,且是、的等比中项,求的取值范围.22.(10分)以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标系,已知直线的极坐标方程为,曲线的参数方程是(为参数(1)求直线和曲线的普通方程;(2)直线与轴交于点,与曲线交于,两点,求
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】构造函数,根据题意,求得其单调性,利用函数单调性解不等式即可.【详解】构造函数,则,故在上单调递减;又,故可得,则,即,解得,故不等式解集为.故选:B.【点睛】本题考察利用导数研究函数单调性,以及利用函数单调性求解不等式,解决本题的关键是根据题意构造函数,属中档题.2、A【解析】根据题意,求得的外心,再根据外心的性质,以及重心的坐标,联立方程组,即可求得结果.【详解】因为,故的斜率,又的中点坐标为,故的垂直平分线的方程为,即,故△的外心坐标即为与的交点,即,不妨设点,则,即;又△的重心的坐标为,其满足,即,也即,将其代入,可得,,解得或,对应或,即或,因为与点重合,故舍去.故点的坐标为.故选:A.3、D【解析】根据题意,结合,,利用不等式的性质可判断,从而判断,再利用不等式性质得出正确答案.【详解】,,,又,,两边同乘以负数,可知故选:D4、D【解析】由双曲线定义结合参数a的取值分类讨论而得.【详解】依题意得,当时,,且,点P的轨迹为双曲线的右支;当时,,故点P的轨迹为一条射线.故选D.故选:D5、D【解析】设垂直于直线,可知圆恒过垂足;两条直线方程联立可求得点坐标.【详解】设垂直于直线,垂足为,则直线方程为:,由圆的性质可知:以为直径的圆恒过点,由得:,以为直径的圆恒过定点.故选:D.6、C【解析】对于A、B、D均可能出现,而对于C是正确的7、B【解析】运用不等式的性质及举反例的方法可求解.详解】对于A,如,满足条件,但不成立,故A不正确;对于B,因为,所以,所以,故B正确;对于C,因为,所以,所以不成立,故C不正确;对于D,因为,所以,所以,故D不正确.故选:B8、C【解析】根据条件构造函数,并求其导数,判断该函数的单调性,据此作出该函数的大致图象,由图象可判断a,b,c与1的大小关系.【详解】令,则当时,,当时,即函数在上单调递减,在上单调递增,而,由可知,故作出函数大致图象如图:由图象易知,,故选:C.9、A【解析】由直线恒过定点,且定点圆内,从而即可判断直线与圆相交.【详解】解:因为直线恒过定点,而,所以定点在圆内,所以直线与圆相交,故选:A.10、A【解析】首先求得点的轨迹,再利用圆心距与半径的关系,即可判断两圆的位置关系.【详解】由条件可知,,化简为:,动点的轨迹是以为圆心,2为半径的圆,圆是以为圆心,为半径的圆,两圆圆心间的距离,所以两圆相交.故选:A11、D【解析】按照茎叶图所给的数据计算即可.【详解】由茎叶图可知,甲的成绩为:11,22,23,24,32,32,33,41,52,其中位数为32,众数为32,平均数为;乙的成绩为:10,22,31,32,35,42,42,50,52,极差为52-10=42,众数为42,平均数为;由以上数据可知,A错误,B错误,C错误,D正确;故选:D.12、C【解析】根据文化知识,分别求出相对应的频率,即可判断出结果【详解】设“宫”的频率为a,由题意经过一次“损”,可得“徵”的频率为a,“徵”经过一次“益”,可得“商”的频率为a,“商”经过一次“损”,可得“羽”频率为a,最后“羽”经过一次“益”,可得“角”的频率是a,由于a,a,a成等比数列,所以“宫、商、角”的频率成等比数列,且公比为,故选:C【点睛】本题考查等比数列的定义,考查学生的运算能力和转换能力及思维能力,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由等差数列和等比数列的通项公式,可得,由不在集合中,在集合中,也在集合中,推得不在数列的前50项内,则数列的前50项中包括的前48项和数列中的3和27,结合等差数列的求和公式,即可求解.【详解】由题意,集合构成数列是首项为1,公差为4的等差数列,集合构成数列是首项为1,公比为3的等比数列,可得,又由不在集合中,在集合中,也在集合中,因为,解得,此时,所以不在数列的前50项内,则数列的前50项的和为.故答案为:.14、##(-1,2]【解析】根据两集合的并集的含义,即可得答案.【详解】因为集合,集合,所以,故答案为:15、【解析】根据离心率得出,结合得出关系,即可求出双曲线的渐近线方程.【详解】解:由题可知,离心率,即,又,即,则,故此双曲线的渐近线方程为.故答案为:.16、13【解析】先根据妹妹的销售量的平均数为14,求得y,进而得到其众数,然后再根据姐姐的销售量的中位数比妹妹的销售量的众数大2,得到姐姐的销售量的中位数.【详解】因为妹妹的销售量的平均数为14,所以,解得,由茎叶图知:妹妹的销售量的众数是14,因为姐姐的销售量的中位数比妹妹的销售量的众数大2,所以姐姐的销售量的中位数是16,所以,解得,所以,故答案为:13三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【解析】(1)设椭圆的左焦点为,根据椭圆的对称性可得,则三角形的周长为,再设根据二次函数的性质得到,即可求出的周长的最小值为,从而得到,再根据,即可求出、,从而求出椭圆方程;(2)设直线MN的方程,,,,联立直线与椭圆方程,消元列出韦达定理,再设直线的方程、,直线的方程、,联立直线方程,消元列出韦达定理,即可表示,即可得到,整理得,再代入,,即可得到,从而求出,即可得解;【小问1详解】设椭圆的左焦点为,则由对称性,,所以的周长为设,则,当A,B是椭圆的上下顶点时,的周长取得最小,所以,即,又椭圆焦点,所以,所以,所以,解得,,所以椭圆的方程为.【小问2详解】解:当A,B为椭圆左右顶点时,直线MN与x轴重合;当A,B为椭圆上下顶点时,可得直线MN的方程为;设直线MN的方程,,,,由得,,,,设直线的方程,其中,,,由得,,,,设直线的方程,其中,,由得,,,所以,所以,所以,则,即,代入,,得,整理得,又所以,直线MN的方程为,综上直线MN过定点18、(1)(2)分布列见解析;期望为【解析】(1)根据古典概型的概率公式即可求出;(2)根据题意可知,随机变量X的所有可能取值为0,3,4,6,7,10,再利用相互独立事件的概率乘法公式分别求出对应的概率,列出分布列即可求出数学期望【小问1详解】从这5人中随机抽取3人,恰有2人简历达标的概率为【小问2详解】由题可知,X的所有可能取值为0,3,4,6,7,10,则,,,,,.故X的分布列为:X0346710P所以19、(1);(2).【解析】(1)由题设可得且,求出,即可得椭圆方程.(2)联立直线l和椭圆C并整理为关于x的一元二次方程,由求出m的范围,再应用韦达定理、弦长公式求,进而可得线段AB的中垂线,同理联立曲线C求相交弦长,再由已知条件求m值,注意其范围.【小问1详解】由题意知,,则,令,可得,由题设有,则,所以C的方程为【小问2详解】联立方程得:,由,得设,,则,,所以,另一方面,,即线段AB的中点为,所以线段AB的中垂线方程为令,联立方程得:同理求法,可得:,即因此,解得,故20、【解析】分别在、和的情况下得命题对应的集合;选条件后可求得命题对应的集合;根据充分不必要条件的定义可知,分别在、和的情况下得到结果.【详解】由得:,当时,不等式解集;当时,不等式解集为;当时,不等式解集为;是的充分不必要条件,命题对应集合是命题对应集合的真子集,即;若选条件①:由得:,;若选条件②:由得:,解得:,;若选条件③:由得:,解得:,;当时,,符合题意;当时,由知:,;当时,由知:,;综上所述:,即实数的取值范围为.21、(1);(2).【解析】(1)根据题意设出圆方程,结合该圆与直线相切,求得半径,则问题得解;(2)设出点的坐标为,根据题意,求得的等量关系,再构造关于的函数关系,求得函数值域即可.【小问1详解】根据题意,设的方程为,又该圆与直线相切,故可得,则圆的方程为.【小问2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考政治一轮复习-第一单元-公民的政治生活单元优化总结讲义-新人教版必修
- 身份认证技术-第二章 用户知道什么
- 2026届新高考英语冲刺复习 读后续写备考技巧
- 2026年南通市邮政管理局招聘辅助人员备考题库含答案详解
- 2026年中电(普安)发电有限责任公司招聘备考题库含答案详解
- 2026年国家核安保技术中心招聘备考题库及1套完整答案详解
- 2026年宜昌市西陵区所属事业单位“招才兴业”人才引进14人公开招聘备考题库·武汉大学站及参考答案详解
- 2026年天津师范大学招聘劳务派遣员工(校医院放射医师岗)备考题库及一套完整答案详解
- 2025年武冈市招募特聘动物防疫专员备考题库及答案详解1套
- 2026年三门县人民医院医共体分院招聘劳务派遣工作人员备考题库及答案详解1套
- 充电桩及充换电场站体系建设项目可行性研究报告
- DB37-T 4440.2-2021 城市轨道交通互联互通体系规范 信号系统 第2部分:ATS系统工作站人机界面
- 韩语topik所有历届考试真题及答案
- 2025年国家开放大学《农业经济学》期末考试备考试题及答案解析
- 2025蚌埠市城市投资控股集团有限公司所属公司招聘9人笔试备考题库及答案解析
- 高压电工操作证培训课件
- 2025年新版劳动合同模板(北京版)
- 2025年事业单位工勤技能-河南-河南防疫员三级(高级工)历年参考题库含答案解析
- 数智企业经营沙盘模拟实训教程-人力规则
- 2025年海南省直及地市、县事业单位招聘考试自然科学专技类(综合应用能力·C类)历年参考题库含答案详解(5卷)
- 2025年同等学力申硕-同等学力(动力工程及工程热物理)历年参考题库含答案解析(5套典型题)
评论
0/150
提交评论