高中物理速度选择器和回旋加速器技巧和方法完整版及练习题含解析_第1页
高中物理速度选择器和回旋加速器技巧和方法完整版及练习题含解析_第2页
高中物理速度选择器和回旋加速器技巧和方法完整版及练习题含解析_第3页
高中物理速度选择器和回旋加速器技巧和方法完整版及练习题含解析_第4页
高中物理速度选择器和回旋加速器技巧和方法完整版及练习题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高中物理速度选择器和回旋加速器技巧和方法完整版及练习题含解析一、速度选择器和回旋加速器1.如图所示,竖直挡板MN右侧空间存在相互垂直的匀强电场和匀强磁场,电场方向竖直向上,电场强度E=100N/C,磁场方向垂直纸面向里,磁感应强度B=0.2T,场中A点与挡板的距离L=0.5m。某带电量q=+2.0×10-6C的粒子从A点以速度垂直射向挡板,恰能做匀速直线运动,打在挡板上的P1点;如果仅撤去电场,保持磁场不变,该粒子仍从A点以相同速度垂直射向挡板,粒子的运动轨迹与挡板MN相切于P2点,不计粒子所受重力。求:(1)带电粒子的速度大小;(2)带电粒子的质量。【答案】(1);(2)【解析】【分析】【详解】(1)正粒子在正交的电场和磁场中做匀速直线运动,则向上的电场力和向下的洛伦兹力平衡,有解得带电粒子的速度大小(2)仅撤去电场保持磁场不变,带电粒子在磁场中做匀速圆周运动,有而粒子偏转90°,由几何关系可知联立可得带电粒子的质量2.如图所示,半径为R的圆与正方形abcd相内切,在ab、dc边放置两带电平行金属板,在板间形成匀强电场,且在圆内有垂直纸面向里的匀强磁场.一质量为m、带电荷量为+q的粒子从ad边中点O1沿O1O方向以速度v0射入,恰沿直线通过圆形磁场区域,并从bc边中点O2飞出.若撤去磁场而保留电场,粒子仍从O1点以相同速度射入,则粒子恰好打到某极板边缘.不计粒子重力.(1)求两极板间电压U的大小(2)若撤去电场而保留磁场,粒子从O1点以不同速度射入,要使粒子能打到极板上,求粒子入射速度的范围.【答案】(1)(2)【解析】试题分析:(1)由粒子的电性和偏转方向,确定电场强度的方向,从而就确定了两板电势的高低;再根据类平抛运动的规律求出两板间的电压.(2)先根据有两种场均存在时做直线运动的过程,求出磁感应强度的大小,当撤去电场后,粒子做匀速圆周运动,要使粒子打到板上,由几何关系求出最大半径和最小半径,从而由洛仑兹力提供向心力就能得出最大的速度和最小速度.(1)无磁场时,粒子在电场中做类平抛运动,根据类平抛运动的规律有:,,解得:(2)由于粒子开始时在电磁场中沿直线通过,则有:撤去电场保留磁场粒子将向上偏转,若打到a点,如图甲图:由几何关系有:由洛伦兹力提供向心力有:解得:若打到b点,如图乙所示:由几何关系有:由洛伦兹力提供向心力有:解得:故3.如图所示,在直角坐标系xOy平面内有一个电场强度大小为E、方向沿-y方向的匀强电场,同时在以坐标原点O为圆心、半径为R的圆形区域内,有垂直于xOy平面的匀强磁场,该圆周与x轴的交点分别为P点和Q点,M点和N点也是圆周上的两点,OM和ON的连线与+x方向的夹角均为θ=60°。现让一个α粒子从P点沿+x方向以初速度v0射入,α粒子恰好做匀速直线运动,不计α粒子的重力。(1)求匀强磁场的磁感应强度的大小和方向;(2)若只是把匀强电场撤去,α粒子仍从P点以同样的速度射入,从M点离开圆形区域,求α粒子的比荷;(3)若把匀强磁场撤去,α粒子的比荷不变,粒子仍从P点沿+x方向射入,从N点离开圆形区域,求粒子在P点的速度大小。【答案】(1),方向垂直纸面向里(2)(3)v0【解析】【详解】(1)由题可知电场力与洛伦兹力平衡,即qE=Bqv0解得B=由左手定则可知磁感应强度的方向垂直纸面向里。(2)粒子在磁场中的运动轨迹如图所示,设带电粒子在磁场中的轨迹半径为r,根据洛伦兹力充当向心力得Bqv0=m由几何关系可知r=R,联立得=(3)粒子从P到N做类平抛运动,根据几何关系可得x=R=vty=R=×t2又qE=Bqv0联立解得v==v04.如图所示为一速度选择器,也称为滤速器的原理图.K为电子枪,由枪中沿KA方向射出的电子,速度大小不一.当电子通过方向互相垂直的均匀电场和磁场后,只有一定速率的电子能沿直线前进,并通过小孔S.设产生匀强电场的平行板间的电压为300V,间距为5cm,垂直纸面的匀强磁场的磁感应强度为0.06T,问:(1)磁场的方向应该垂直纸面向里还是垂直纸面向外?(2)速度为多大的电子才能通过小孔S?【答案】(1)磁场方向垂直纸面向里(2)1×105m/s【解析】【分析】【详解】(1)由题图可知,平行板产生的电场强度E方向向下.带负电的电子受到的静电力FE=eE,方向向上.若没有磁场,电子束将向上偏转,为了使电子能够穿过小孔S,所加的磁场施于电子束的洛伦兹力必须是向下的,根据左手定则分析得出,B的方向垂直于纸面向里.(2)能够通过小孔的电子,其速率满足evB=eE解得:v=又因为E=所以v==1×105m/s即只有速率为1×105m/s的电子才可以通过小孔S5.在图所示的平行板器件中,电场强度和磁感应强度相互垂直.具有某一水平速度的带电粒子,将沿着图中所示的虚线穿过两板间的空间而不发生偏转,具有其他速度的带电粒子将发生偏转.这种器件能把具有某一特定速度的带电粒子选择出来,叫作速度选择器.已知粒子A(重力不计)的质量为m,带电量为+q;两极板间距为d;电场强度大小为E,磁感应强度大小为B.求:(1)带电粒子A从图中左端应以多大速度才能沿着图示虚线通过速度选择器?(2)若带电粒子A的反粒子(-q,m)从图中左端以速度E/B水平入射,还能沿直线从右端穿出吗?为什么?(3)若带电粒子A从图中右端两极板中央以速度E/B水平入射,判断粒子A是否能沿虚线从左端穿出,并说明理由.若不能穿出而打在极板上.请求出粒子A到达极板时的动能?【答案】(1)E/B(2)仍能直线从右端穿出,由(1)可知,选择器(B,E)给定时,与粒子的电性、电量无关.只与速度有关(3)不可能,【解析】试题分析:,电场的方向与B的方向垂直,带电粒子进入复合场,受电场力和安培力,且二力是平衡力,即Eq=qvB,即可解得速度.仍能直线从右端穿出,由(1)可知,选择器(B,E)给定时,与粒子的电性、电量无关.只与速度有关.(1)带电粒子在电磁场中受到电场力和洛伦兹力(不计重力),当沿虚线作匀速直线运动时,两个力平衡,即Eq=Bqv解得:(2)仍能直线从右端穿出,由(1)可知,选择器(B,E)给定时,与粒子的电性、电量无关.只与速度有关.(3)设粒子A在选择器的右端入射是速度大小为v,电场力与洛伦兹力同方向,因此不可能直线从左端穿出,一定偏向极板.设粒子打在极板上是的速度大小为v′.由动能定理得:因为E=Bv联立可得粒子A到达极板时的动能为:点睛:本题主要考查了从速度选择器出来的粒子电场力和洛伦兹力相等,粒子的速度相同,速度选择器只选择速度,不选择电量与电性,同时要结合功能关系分析.6.某粒子实验装置原理图如图所示,狭缝、、在一条直线上,、之间存在电压为U的电场,平行金属板、相距为d,内部有相互垂直的匀强电场和匀强磁场,磁感应强度为。比荷为k的带电粒子由静止开始经、之间电场加速后,恰能沿直线通过、板间区域,从狭缝垂直某匀强磁场边界进入磁场,经磁场偏转后从距离为L的A点射出边界。求:(1)、两板间的电压;(2)偏转磁场的磁感应强度。【答案】(1)(2)【解析】【分析】(1)粒子先在电场中加速,然后匀速通过、,则根据平衡可求出、两板间的电压(2)根据粒子的运动轨迹找到运动半径,借助于可求出偏转磁场的磁感应强度【详解】(1)设带电粒子质量为m,所带电荷量为q,已知粒子在电场中S1与S2之间加速,根据动能定理可得:;带电粒子在P1和P2间运动,根据电场力与洛伦兹力平衡可得:解得:;(2)带电粒子在磁场中做匀速圆周运动,根据洛伦兹力充当向心力:;已知,解得:7.如图所示,两平行金属板水平放置,板间存在垂直纸面的匀强磁场和电场强度为E的匀强电场。金属板右下方以MN为上边界,PQ为下边界,MP为左边界的区域内,存在垂直纸面向外的匀强磁场,磁场宽度为d,MN与下极板等高,MP与金属板右端在同一竖直线。一个电荷量为q、质量为m的正离子以初速度在两板间沿平行于金属板的虚线射入金属板间。不计粒子重力。(1)已知离子恰好做匀速直线运动,求金属板间的磁感应强度B0;(2)若撤去板间磁场B0,离子恰好从下极板的右侧边缘射出电场,方向与水平方向成30°角,离子进入磁场运动后从磁场边界点射出,求该磁场的磁感应强度B的大小。【答案】(1)(2)【解析】【详解】(1)设板间的电场强度为E,离子做匀速直线运动,受到的电场力和洛伦兹力平衡,有:qE=qv0B0,解得:;(2)离子在电场中做类平抛运动,水平方向做匀速运动,则出离电场进入磁场的速度:,设离子进入磁场后做匀速圆周运动的半径为r,根据牛顿第二定律,得:qvB=,由几何关系得:=rcos30°,解得:;【点睛】离子在速度选择器中做匀速直线运动,在电场中做类平抛运动,在磁场中做匀速圆周运动,洛伦兹力提供向心力,根据题意分析清楚离子运动过程是解题的前提与关键,应用牛顿第二定律与类平抛运动规律可以解题。8.回旋加速器原理如图所示,D1和D2是两个中空的半圆形金属盒,置于与盒面垂直的匀强磁场中,它们接在交流电源上,位于D1圆心处的离子源A能不断产生正离子,它们在两盒之间被电场加速,当正离子被加速到最大动能Ek后,再设法将其引出。已知正离子的电荷量为q,质量为m,加速时电极间电压大小恒为U,磁场的磁感应强度为B,D型盒的半径为R,狭缝之间的距离为d。设正离子从离子源出发时的初速度为零。(1)试计算上述正离子被第一次加速后进入D2中运动的轨道半径;(2)计算正离子飞出时的最大动能;(3)设该正离子在电场中的加速次数与回旋半周的次数相同,试证明当R>>d时,正离子在电场中加速的总时间相对于在D形盒中回旋的时间可忽略不计(正离子在电场中运动时,不考虑磁场的影响)。【答案】(1);(2);(3)见解析【解析】【分析】【详解】(1)设质子第1次经过狭缝被加速后的速度为v1,根据动能定理可得解得洛伦兹力充当向心力,则有解得(2)离子射出时加速器时解得离子动能为(3)在电场中运动可以看做连续的匀加速直线运动,设离子射出时速度为v。根据平均速度公式可得在电场中运动时间为离子在D形盒中运动的周期为粒子在磁场中回旋的时间为有=当d<<R时,t1<<t2,即电场中运动时间可以忽略9.1932年美国物理学家劳伦斯发明了回旋加速器,巧妙地利用带电粒子在磁场中运动特点,解决了粒子的加速问题。现在回旋加速器被广泛应用于科学研究和恢学设备中。回旋加速器的工作原理如图甲所,置于真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B的匀强磁场与盒面垂直,加速器按一定频率的高频交流电源,保证粒子每次经过电场都被加速,加速电压为U。D形金属盒中心粒子源产生的粒子,初速度不计,在加速器中被加速,加速过程中不考虑相对论效应和重力作用。(1)求把质量为m、电荷量为q的静止粒子加速到最大动能所需时间;(2)若此回旋加速器原来加速质量为2m,带电荷量为q的α粒子(),获得的最大动能为Ekm,现改为加速氘核(),它获得的最大动能为多少?要想使氘核获得与α粒子相同的动能,请你通过分析,提出一种简单可行的办法;(3)已知两D形盒间的交变电压如图乙所示,设α粒子在此回旋加速器中运行的周期为T,若存在一种带电荷量为q′、质量为m′的粒子,在时进入加速电场,该粒子在加速器中能获得的最大动能?(在此过程中,粒子未飞出D形盒)【答案】(1);(2),见解析;(3)【解析】【分析】【详解】(1)由洛伦兹力提供向心力得粒子每旋转一周动能增加2qU,则旋转周数周期粒子在磁场中运动的时间一般地可忽略粒子在电场中的运动时间,t磁可视为总时间(2)对α粒子,由速度得其最大动能为对氘核,最大动能为若两者有相同的动能,设磁感应强度变为B′、由α粒子换成氘核,有解得,即磁感应强度需增大为原来的倍高频交流电源的原来周期故由α粒子换为氘核时,交流电源的周期应为原来的(3)对粒子分析,其在磁场中的周期每次加速偏移的时间差为加速次数所以获得的最大动能10.汽车又停下来了,原来是进了加油站。小明想,机器总是要消耗能源才干活儿,要是制造出不消耗任何能源却能源源不断对外做功的机器,那该是利国利民的大功劳一件啊!小明为此设计了一个离子加速器方案:两个靠得很近的、正对处留有狭缝的半圆形金属盒,处在垂直于纸面向里、磁感应强度大小为B的匀强磁场中,M和是固定在金属盒狭缝边缘的两平行极板,其上有正对的两个小孔,给极板充电后,上板带正电且两板间电压为U;质量为m、带电量为q的正离子从M板小孔由静止开始加速,经板小孔进入磁场区域,离子经磁场偏转后又回到M板小孔继续加速,再偏转,再加速……假设电场集中在两极板之间,其他区域没有电场,并忽略离子所受的重力,试计算:(1)两于第1次加速后获得的动能:(2)第n次加速后和第次加速后,离子在磁场中偏转的半径大小之比;(3)小明想,离子每次经磁场偏转后都能再次进入两极板间的电场进行加速,这个过程中电场、磁场不发生任何变化,离子动能却不断的增加……这个离子加速器就实现了不消耗任何能源便可以能源源不断地对离子做功的目的!请根据你所学的知识,试判断小明的设计方案是否科学,并具体阐述你的理由。【答案】(1)qU;(2);(3)见解析。【解析】【分析】【详解】(1)由动能定理可qU=Ek-0解得离子第1次加速后获得的动能为Ek=qU(2)设第n次加速后离子获得的速度为vn,则由动能定理可知设离子在磁场中偏转的轨道半径大小为rn,根据牛顿第二定律可知联立解得同理,第n+1次加速后,离子子啊磁场中偏转的半径大小为则(3)小明的设计不科学,因为它违背了能量守恒定律,永动机不可能制成。实际上,电场并不只是分布在两极板之间,在极板外,仍然有从M板出发指向M'板的电场线,离子在两极板之外的磁场中运动时,电场力做负功,回到初始位置M板的小孔处时,电场力所做的总功为零,离子速度恢复为原来的值,离子并不能持续的加速。11.正、负电子从静止开始分别经过同一回旋加速器加速后,从回旋加速器D型盒的边缘引出后注入到正负电子对撞机中.正、负电子对撞机置于真空中.在对撞机中正、负电子对撞后湮灭成为两个同频率的光子.回旋加速器D型盒中的匀强磁场的磁感应强度为,回旋加速器的半径为R,加速电压为U;D型盒缝隙间的距离很小,带电粒子穿过的时间可以忽略不计.电子的质量为m、电量为e,重力不计.真空中的光速为c,普朗克常量为h.(1)求正、负电子进入对撞机时分别具有的能量E及正、负电子对撞湮灭后产生的光子频率v(2)求从开始经回旋加速器加速到获得最大能量的过程中,D型盒间的电场对电子做功的平均功率(3)图甲为正负电子对撞机的最后部分的简化示意图.位于水平面的粗实线所示的圆环真空管道是正、负电子做圆周运动的“容器”,正、负电子沿管道向相反的方向运动,在管道内控制它们转变的是一系列圆形电磁铁.即图中的A1、A2、A4……An共有n个,均匀分布在整个圆环上.每个电磁铁内的磁场都是匀强磁场,并且磁感应强度都相同,方向竖直向下.磁场区域的直径为d.改变电磁铁内电流大小,就可以改变磁场的磁感应强度,从而改变电子偏转的角度.经过精确调整,首先实现电子在环形管道中沿图甲中粗虚线所示的轨道运动,这时电子经过每个电磁铁时射入点和射出点都在电磁铁的同一直径的两端,如图乙所示.这就为进一步实现正、负电子的对撞做好了准备.求电磁铁内匀强磁场的磁感应强度B大小【答案】(1),;(2);(3)【解析】【详解】解:(1)正、负电子在回旋加速器中磁场里则有:解得正、负电子离开回旋加速器时的速度为:正、负电子进入对撞机时分别具有的能量:正、负电子对撞湮灭时动量守恒,能量守恒,则有:正、负电子对撞湮灭后产生的光子频率:(2)从开始经回旋加速器加速到获得最大能量的过程,设在电场中加速次,则有:解得:正、负电子在磁场中运动的周期为:正、负电子在磁场中运动的时间为:D型盒间的电场对电子做功的平均功率:(3)设电子在匀强磁场中做圆周运动的半径为,由几何关系可得解得:根据洛伦磁力提供向心力可得:电磁铁内匀强磁场的磁感应强度大小:12.(12分)回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底面的匀强磁场,D形盒中央为质子流,D形盒的交流电压为U,静止质子经电场加速后,进入D形盒,其最大轨道半径为R,磁场的磁感应强度为B,质子质量为m.电荷量为q,求:(1)交流电源的频率是多少.(2)质子经回旋加速器最后得到的最大动能多大;(3)质子在D型盒内运动的总时间t(狭缝宽度远小于R,质子在狭缝中运动时间不计)【答案】(1)(2)(3)【解析】试题分析:(1)根据回旋加速器的原理,每转一周粒子被加速两次,交流电完成一次周期性变化,粒子作圆周运动的周期(2分)所以,交流电源的频率得:(2分)(2)质子加速后的最大轨道半径等于D型盒的半径,由洛伦兹力提供向心力得粒子的最大运行速度;(2分)质子获得的最大动能:,得(2分)(3)质子每个周期获得的动能为:(1分)经过的周期个数为:(1分)质子在D型盒内运动的总时间:(1分)即(1分)考点:回旋加速器。【名师点睛】回旋加速器是通过多次加速来获得高能粒子的装置,在D型盒的狭缝中加交变电压,给粒子加速,通过在D型盒处的磁场回旋,从而达到多次加速的效果,获得的最大动能是由D型盒的半径决定的,运动时间则由在磁场中做圆周运动的时间决定,为使每次粒子到达狭缝处都被加速,交变电压的周期与粒子在磁场中的运动周期相同。13.回旋加速器是用来加速带电粒子的装置,如图所示它的核心部分是两个D形金属盒,两盒相距很近缝隙的宽度远小于盒半径,分别和高频交流电源相连接,使带电粒子每通过缝隙时恰好在最大电压下被加速两盒放在匀强磁场中,磁场方向垂直于盒面,带电粒子在磁场中做圆周运动,粒子通过两盒的缝隙时反复被加速,直到最大圆周半径时通过特殊装置被引出若D形盒半径为R,所加磁场的磁感应强度为设两D形盒之间所加的交流电压的最大值为U,被加速的粒子为粒子,其质量为m、电量为粒子从D形盒中央开始被加速初动能可以忽略,经若干次加速后,粒子从D形盒边缘被引出求:粒子被加速后获得的最大动能;粒子在第n次加速后进入一个D形盒中的回旋半径与紧接着第次加速后进入另一个D形盒后的回旋半径之比;粒子在回旋加速器中运动的时间;若使用此回旋加速器加速氘核,要想使氘核获得与粒子相同的动能,请你通过分析,提出一个简单可行的办法.【答案】(1)(2)(3)(4)【解析】【详解】(1)α粒子在D形盒内做圆周运动,轨道半径达到最大时被引出,具有最大动能设此时的速度为v,有

可得粒子的最大动能

(2)α粒子被加速一次所获得的能量为粒子被第n次和次加速后的动能分别为

可得

(3)设粒子被电场加速的总次数为a,则

可得

粒子在加速器中运动的时间是粒子在D形盒中旋转a个半圆周的总时间t.

解得

(4)加速器加速带电粒子的能量为,由粒子换成氘核,有,则,即磁感应强度需增大为原来的倍;高频交流电源的周期,由粒子换为氘核时,交流电源的周期应为原来的倍【点睛】解决本题的关键知道回旋加速器利用磁场偏转和电场加速实现加速粒子,粒子在磁场中运动的周期和交流电的周期相等.14.1930年,EarnestO.Lawrence提出了回旋加速器的理论,他设想用磁场使带电粒子沿圆弧形轨道旋转,多次反复地通过高频加速电场,直至达到高能量。题图甲为EarnestO.Lawrence设计的回旋加速器的示意图。它由两个铝制D型金属扁盒组成,两个D形盒正中间开有一条狭缝;两个D型盒处在匀强磁场中并接有高频交变电压。图乙为俯视图,在D型盒上半面中心S处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D型盒中。在磁场力的作用下运动半周,再经狭缝电压加速;为保证粒子每次经过狭缝都被加速,应设法使交变电压的周期与粒子在狭缝及磁场中运动的周期一致。如此周而复始,最后到达D型盒的边缘,获得最大速度后被束流提取装置提取出。已知正离子的电荷量为q,质量为m,加速时电极间电压大小恒为U,磁场的磁感应强度为B,D型盒的半径为R,狭缝之间的距离为d。设正离子从离子源出发时的初速度为零。(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论