版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省黄冈、华师大附中等八校2026届数学高二上期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某几何体的三视图如图所示,则该几何体的体积为A.54 B.45C.27 D.812.下列直线中,倾斜角最大的为()A. B.C. D.3.已知,则下列说法中一定正确的是()A. B.C. D.4.设,则的一个必要不充分条件为()A. B.C. D.5.在长方体中,()A. B.C. D.6.在三棱锥中,,,则异面直线PC与AB所成角的余弦值是()A. B.C. D.7.数列,,,,…的一个通项公式为()A. B.C. D.8.如图,某圆锥的轴截面是等边三角形,点是底面圆周上的一点,且,点是的中点,则异面直线与所成角的余弦值是()A. B.C. D.9.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待18秒才出现绿灯的概率为()A B.C. D.10.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,,一辆车从甲地到乙地,恰好遇到2个红灯的概率为()A. B.C. D.11.已知全集,集合,则()A. B.C. D.12.已知双曲线的左焦点为F,O为坐标原点,M,N两点分别在C的左、右两支上,若四边形OFMN为菱形,则C的离心率为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设命题:,,则为______.14.如图,已知,分别是椭圆的左、右焦点,现以为圆心作一个圆恰好经过椭圆的中心并且交椭圆于点,.若过点的直线是圆的切线,则椭圆的离心率为_________15.若无论实数取何值,直线与圆恒有两个公共点,则实数的取值范围为___________.16.围棋是一种策略性两人棋类游戏.已知某围棋盒子中有若干粒黑子和白子,从盒子中取出2粒棋子,2粒都是黑子的概率为,2粒恰好是同一色的概率比不同色的概率大,则2粒恰好都是白子的概率是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱柱中,平面ABC,,,,点D,E分别在棱和棱上,且,,M为棱中点(1)求证:;(2)求直线AB与平面所成角的正弦值18.(12分)如图,已知等腰梯形,,为等腰直角三角形,,把沿折起(1)当时,求证:;(2)当平面平面时,求平面与平面所成二面角的平面角的正弦值19.(12分)在公差为的等差数列中,已知,且成等比数列.(Ⅰ)求;(Ⅱ)若,求.20.(12分)已知正项数列的前项和满足(1)求数列的通项公式;(2)若,求数列的前项和.21.(12分)直线经过点,且与圆相交与两点,截得的弦长为,求的方程.22.(10分)奋发学习小组共有3名学生,在某次探究活动中,他们每人上交了1份作业,现各自从这3份作业中随机地取出了一份作业.(1)每个学生恰好取到自己作业的概率是多少?(2)每个学生不都取到自己作业的概率是多少?(3)每个学生取到的都不是自己作业的概率是多少?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由三视图可得该几何体是由平行六面体切割掉一个三棱锥而成,直观图如图所示,所以该几何体的体积为故选B点睛:本题考查了组合体的体积,由三视图还原出几何体,由四棱柱的体积减去三棱锥的体积.2、D【解析】首先分别求直线的斜率,再结合直线倾斜角与斜率的关系,即可判断选项.【详解】A.直线的斜率;B.直线的斜率;C.直线的斜率;D.直线的斜率,因为,结合直线的斜率与倾斜角的关系,可知直线的倾斜角最大.故选:D3、B【解析】AD选项,举出反例即可;BC选项,利用不等式的基本性质进行判断.【详解】当,时,满足,此时,故A错误;因,所以,,,B正确;因为,所以,,故,C错误;当,时,满足,,,所以,D错误.故选:B4、C【解析】利用必要条件和充分条件的定义判断.【详解】A选项:,,,所以是的充分不必要条件,A错误;B选项:,,所以是的非充分非必要条件,B错误;C选项:,,,所以是必要不充分条件,C正确;D选项:,,,所以是的非充分非必要条件,D错误.故选:C.5、D【解析】根据向量的运算法则得到,带入化简得到答案.【详解】在长方体中,易知,所以.故选:D.6、A【解析】分别取、、的中点、、,连接、、、、,由题意结合平面几何的知识可得、、或其补角即为异面直线PC与AB所成角,再由余弦定理即可得解.【详解】分别取、、的中点、、,连接、、、、,如图:由可得,所以,在,,可得由中位线的性质可得且,且,所以或其补角即为异面直线PC与AB所成角,在中,,所以异面直线AB与PC所成角的余弦值为.故选:A.【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下:(1)平移:平移异面直线中的一条或两条,作出异面直线所成的角;(2)认定:证明作出的角就是所求异面直线所成的角;(3)计算:求该角的值,常利用解三角形;(4)取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角7、B【解析】根据给定数列,结合选项提供通项公式,将n代入验证法判断是否为通项公式.【详解】A:时,排除;B:数列,,,,…满足.C:时,排除;D:时,排除;故选:B8、C【解析】建立空间直角坐标系,分别得到,然后根据空间向量夹角公式计算即可.【详解】以过点且垂直于平面的直线为轴,直线,分别为轴,轴,建立如图所示的空间直角坐标系.不妨设,则根据题意可得,,,,所以,,设异面直线与所成角为,则.故选:C.9、B【解析】由几何概型公式求解即可.【详解】红灯持续时间为40秒,则至少需要等待18秒才出现绿灯的概率为,故选:B10、B【解析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解【详解】由各路口信号灯工作相互独立,可得某人从甲地到乙地恰好遇到2次红灯的概率:故选:B11、B【解析】根据题意先求出,再利用交集定义即可求解.【详解】全集,集合,则,故故选:B12、C【解析】由题意可得且,从而求出点的坐标,将其代入双曲线方程中,即可得出离心率.【详解】由题意,四边形为菱形,如图,则且,分别为的左,右支上的点,设点在第二象限,在第一象限.由双曲线的对称性,可得,过点作轴交轴于点,则,所以,则,所以,所以,则,即,解得,或,由双曲线的离心率,所以取,则故选:C二、填空题:本题共4小题,每小题5分,共20分。13、,【解析】由全称命题的否定即可得到答案【详解】根据全称命题的否定,可得为,【点睛】本题考查了含有量词的命题否定,属于基础题14、##【解析】根据给定条件探求出椭圆长轴长与其焦距的关系即可计算作答.【详解】设椭圆长轴长为,焦距为,即,依题意,,而直线是圆的切线,即,则有,又点在椭圆上,即,因此,,从而有,所以椭圆的离心率为.故答案为:15、【解析】根据点到直线的距离公式得到,根据,解不等式得到答案.【详解】依题意有圆心到直线的距离,即,又无论取何值,,故,故.故答案:16、【解析】根据互斥事件与对立事件概率公式求解即可【详解】设“2粒都是黑子”为事件,“2粒都是白子”为事件,“2粒恰好是同一色”为事件,“2粒不同色”为事件,则事件与事件是对立事件,所以因为2粒恰好是同一色的概率比不同色的概率大,所以,所以,又,且事件与互斥,所以,所以故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)由线面垂直、等腰三角形的性质易得、,再根据线面垂直的判定及性质证明结论;(2)构建空间直角坐标系,确定相关点坐标,进而求的方向向量、面的法向量,应用空间向量夹角的坐标表示求直线与平面所成角的正弦值.【小问1详解】在三棱柱中,平面,则平面,由平面,则,,则,又为的中点,则,又,则平面,由平面,因此,.【小问2详解】以为原点,以,,为轴、轴、轴的正方向建立空间直角坐标系,如图所示,可得:,,,,,,.∴,,,,设为面的法向量,则,令得,设与平面所成角为,则,∴直线与平面所成角的正弦值为.18、(1)证明见解析(2)【解析】(1)取的中点E,连,证明四边形为平行四边形,从而可得为等边三角形,四边形为菱形,从而可证,,即可得平面,再根据线面垂直的性质即可得证;(2)取的中点M,连接,以B为空间坐标原点,向量分别为x,y,z轴建立空间直角坐标系,利用向量法即可得出答案.【小问1详解】解:取的中点E,连,∵,∴,∵,∴四边形为平行四边形,∵,∴,∵,∴为等边三角形,四边形为菱形,∴,,∴∴,∵,,,平面,,∴平面,∵平面,∴;【小问2详解】解:取的中点M,连接,由(1)知,,∵平面平面,,∴平面,以B为空间坐标原点,向量分别为x,y,z轴建立空间直角坐标系,则,设平面的法向量为,由,,有,取,可得,设平面的法向量为,由,,有,取,有,有,故平面与平面所成二面角的正弦值为19、(Ⅰ)或(Ⅱ)【解析】(Ⅰ)由题意求得数列的公差后可得通项公式.(Ⅱ)结合条件可得,分和两种情况去掉中的绝对值后,利用数列的前n项和公式求解试题解析:(Ⅰ)∵成等比数列,∴,整理得,解得或,当时,;当时,所以或(Ⅱ)设数列前项和为,∵,∴,当时,,∴;当时,综上20、(1)(2)【解析】小问1:利用通项公式与的关系即可求出;小问2:根据(1)可得,结合错位相减法即可求出前n项和【小问1详解】当时,,.当时,,…①,,…②①②得:,即:.,是以为首项,以为公差的等差数列,;【小问2详解】由(1)可知,则,…①两边同乘得:,…②①②得:,.21、或【解析】直线截圆得的弦长为,结合圆的半径为5,利用勾股定理可得圆心到直线的距离,再利用点到直线的距离公式列方程求出直线斜率,由点斜式可得结果.【详解】设直线的方程为,即,因为圆的半径为5,截得的弦长为所以圆心到直线的距离,即或,∴所求直线的方程为或.【点睛】本题主要考查点到直线距离公式以及圆的弦长的求法,求圆的弦长有两种方法:一是利用弦长公式,结合韦达定理求解;二是利用半弦长,弦心距,圆半径构成直角三角形,利用勾股定理求解.22、(1)(2)(3)【解析】(1)根据列举法列出所有的可能基本事件,进而得出每
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 基础会计选择题目及答案
- 办公软件授权协议(2025年使用权)
- 2025年河北省公需课学习-环境保护税征收管理实务487
- 2025年湖南各市遴选真题及答案
- 考试常考题型试卷及答案
- 人大企管复试真题及答案
- 企业招聘管理真题及答案
- 外汇买卖合同范本
- 2025年专四语法知识题库及答案
- 金融入职笔试题库及答案
- 珠海市纪委监委公开招聘所属事业单位工作人员12人考试题库附答案
- 2025内蒙古鄂尔多斯东胜区消防救援大队招聘乡镇(街道)消防安全服务中心专职工作人员招聘3人考试笔试模拟试题及答案解析
- 2025济宁市检察机关招聘聘用制书记员(31人)笔试考试参考试题及答案解析
- 2025年安全总监年终总结报告
- 安顺市人民医院招聘聘用专业技术人员笔试真题2024
- 厨师专业职业生涯规划与管理
- 2025年10月自考00688设计概论试题及答案
- 六西格玛设计实例
- 海南槟榔承包协议书
- 工业交换机产品培训
- 2025浙江温州市龙港市国有企业招聘产业基金人员3人笔试历年备考题库附带答案详解试卷3套
评论
0/150
提交评论